Systems with strong electronic correlations leads to a fascinating variety of phenomena such as magnetic order, multiferroicity, superconductance, colossal magnetoresistance and much more. Well-established characterization methods are at our disposal for investigating these states of matter, including, for example, diffraction techniques, scanning probe microscopy as well as magnetic, dielectric or transport measurements. In my talk, I will focus on the interplay of nonlinear laser spectroscopy and ferroic order. Laser pulses can be used either to monitor ferroic states with spatial (domains) or temporal (dynamics) resolution. On the other hand, strong light pulses can manipulate the ordered state as such and even induce phase transitions.