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Chapter 1
Introduction

The field of cavity optomechanics explores the interaction between mechanical motion and
electromagnetic radiation in optical resonators. Historically, cavity optomechanics originated
as a "by-product" of the developments in optical gravitational wave detectors in the late 1970s
and has since flourished into an expansive field governing the classical and quantum mechanical
interaction between optics and mechanics in devices from the microscopic- (m ∼ 10−20 g) to
the macroscopic (m ∼ kg) scale [1]. Nowadays, optomechanical devices offer many potential
applications ranging from extremely sensitive optical sensors of small forces [2] to unitary
frequency converters between the optical- and microwave regime for quantum networking &
computing [3].
Braginsky et al. demonstrated cavity optomechanical effects with microwaves [4] in pioneering
experiments as early as 1967 and Dorsel et al. (1983) were the first to demonstrate radiation-
pressure induced optomechanical interaction in a Fabry-Perot resonator with one suspended
end-mirror [5]. These early developments spearheaded the discovery of many phenomena unique
to optomechanics such as the optical spring effect [6], optomechanical dampening (leading
to cooling of the mechanical resonator) [7] and optical bistability [5] displayed in a variety
of novel cavity optomechanics systems ranging from nanorods inside Fabry-Perot cavities [8],
photonic crystals [9], whispering gallery microdisks [10], cold atom clouds [11] and of course in
its simplest realization a Fabry-Perot resonator with a suspended mirror. Very similar to the
last device is the so-called "Membrane-in-the-Middle" (MIM) cavity (demonstrated in 2008 by
[12]) again consisting of a Fabry-Perot cavity with two fixed mirrors and pliable (dielectric)
membrane in-between. The major advantage of this system is the decoupling of optics and
mechanics which allows for individual optimization without compromise between the two
constituents. As reaching the quantum regime demands high performance of both optical and
mechanical resonator [13], the MIM system offers a favorable platform for these purposes.
As our research group already successfully utilizes fiber-based Fabry-Perot micro-resonators
([14], [15]) for a wide range of applications, the choice for the optical constituent for the
optomechanical experiments is obvious: Fiber-mirrors offer miniature size and small cavity
mode volume while also offering simple interfacing due to the fiber-coupling [16], making
it the ideal choice for the integration into more complex systems. Many established MIM
experiments utilize commercial silicone nitride (SiN) membranes because of their high optical
and mechanical quality [17]. These membranes then need to be integrated into the cavity,
often increasing the size and complexity of the experimental setup. As a more compact and
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Chapter 1. Introduction

lightweight approach, 3D laser written polymer structures can be directly integrated into the
MIM cavity offering a flexible alternative to the SiN membranes. This flexibility, combined
with the ease of interfacing such a system through fiber-coupling and its scaling capabilities
to larger more complex systems makes it a promising platform for upcoming challenges in
cavity optomechanics like versatile optomechanical sensor platforms, realization of multimode
optomechanical experiments, investigation of quantum many-body physics in optomechanical
arrays and many more.
Since our research group did not have an established experimental realization of such systems,
the goal of this thesis was to show a proof of principle operation of this novel MIM platform
to quantify its performance.
The first two chapters of this thesis are dedicated to the constituents of the MIM system and
serve as an introduction and overview of their properties. The final chapter describes how the
optical and mechanical mode couple, quantifies the expected coupling strength and finally
presents the characterization measurements of the optomechanical system.
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Chapter 2
Optics: Fiber Fabry-Perot cavities for
optomechanical interaction

Compared to their free-space coupled counterpart, a fiber-based cavity system offers many
advantages when it comes to the ease of in-coupling light into the resonator, while also offering a
miniaturized and compact design. On the other hand, the small mode volumes Vmode provided
by fiber resonators are useful for cavity QED experiments where the coupling between the
intra-cavity field and atomic ensembles scale as V −1/2

mode . For optomechanical applications, these
cavities offer a great platform to integrate optomechanical components into resonator systems
on a microscopic scale.

2.1 The Fabry-Perot cavity

In the following section, the core concepts of free-space coupled optical resonators are introduced.
The longitudinal- and transversal modes of light inside the Fabry-Perot cavity are briefly
explained and an introduction to the resonator stability criterion is given. The following
section deals with the physics unique to Fiber-Fabry-Perot-Cavities (FFPC).

2.1.1 Basics of Fabry-Perot cavities

Since optical resonators are essential for performing cavity optomechanics, fundamental
concepts and characteristics of the Fabry-Perot cavity (FPC) are reviewed briefly. A more
in-depth analysis and derivation of the core results can be found in standard optics textbooks
such as [18].

FPC: longitudinal modes In its simplest realization, a Fabry-Perot cavity consists of two
highly reflective planar mirror surfaces (M1 & M2) each entirely described by their respective
reflectivity (ri), transmission (ti) and losses (li) 1. This configuration allows in-coupled light
E in to be reflected back and forth a considerable amount of times (compare Fig. 2.1 (a)). If
the light wave reproduces itself after one complete round trip, constructive interference of the
partial fields builds up a strong intra-cavity field Ecirc:

1The corresponding amplitudes Ti, Ri and Li are related as Ri = |ri|2 = 1− Ti − Li
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Chapter 2. Optics: Fiber Fabry-Perot cavities for optomechanical interaction

(a) (b) (c)

Figure 2.1: (a) Diagrammatic representation of the field distributions for a FPC with planar mirrors
M1 & M2 separated by the cavity length Lcav. (b) Normalized reflection spectrum (compare Eq.
(2.3)) featuring two adjacent resonance dips with F = 10 (dashed line) and F = 50 (solid line).
(c) Impedance-matching factor ηimp plotted against the loss ratio T1/(T2 + 2L). A cavity is called
over-(under-) coupled if T1 > T2 + 2L (T1 < T2 + 2L), marked in the diagram as the blue (red) shaded
area. For most applications it is preferred to maintain a critically coupled cavity, where T1 = T2 + 2L.

Ecirc = t1Ein
(
1 + r1r2e

iφ + (r1r2)2e2iφ + . . .
)

= Ein
t1

1− r1r2 eiφ
(2.1)

where the additional phase shift due to reflection at the mirrors has been absorbed into
the overall acquired phase shift eiφ after one complete round-trip. In frequency space, the
resulting power spectrum consists of an infinite collection of resonant longitudinal modes
separated by the so-called Free-Spectral-Range (FSR) ∆νFSR.

This (resonance) condition can be mathematically expressed by demanding that the phase
of the light field φ = k · 2L′cav must equal 2π after one round trip inside the cavity of length
Lcav

2. In total, this leads to a restriction on the frequency as ν = N ·∆νFSR where N is an
integer.

Since the intra cavity field Ecirc is much less experimentally accessible, it is often common
to probe the reflected (transmitted) spectrum |Er|2 (|Et|2). Realizing that the reflected field Er
is just the sum of the immediately reflected input field r1Ein and the leakage of the build-up
intrinsic field Ecirc and making use of Eq. (2.1), it follows that:

Er = r1Ein − r2t1Ecirc eiφ = Ein
(
r1 − r2(1− L)eiφ

1− r1r2 eiφ

)
. (2.2)

where the additional minus sign in front of r2t1Ecirc eiφ is due to one less reflection compared
to the circulating field Ecirc. The resulting periodic reflection spectrum, as shown in Fig. 2.1
(b), can be written as:

Pr = Pin

1− ηimp + (1− L) · 4F2

π2 sin2(π ν
∆νFSR )

1 + 4F2

π2 sin2(π ν
∆νFSR )

 (2.3)

under the assumption that L1 = L2 & T ,L � 1. The factor F = 2π/∑i Li =
2π/(T1 + T2 + 2L) is the so-called Finesse of the cavity. It characterizes the optical quality

2here, L′cav corresponds to the optical length of the cavity defined by L′cav = n ·Lcav, where n is the refractive
index of the medium between mirrors M1 & M2 and Lcav their geometric separation. For the sake of visual
clarity, the dash will be suppressed.
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2.1. The Fabry-Perot cavity

of the resonator and is proportional to the enhancement of the injected power T1Pin for
the circulating field Ecirc. It furthermore links two important frequency measures of the
reflected spectrum in the FSR and the Full-Width-Half-Maximum (FWHM) ∆νFWHM via
F = ∆νFSR/∆νFWHM.

ηimp is the so-called impedance-matching factor and determines how well the injected
power is coupled to the cavity system. Mathematically, it can be expressed as:

ηimp = 1−
(
T2 − T1 + 2L
T2 + T1 + 2L

)2

(2.4)

If the overall losses (T2 + 2L) exactly equal the input transmission amplitude T1, the two
fields from Eq. (2.2) interfere destructively which results in no reflected power on resonance.
This type of cavity configuration is called critically coupled whereas for an over-(under-)
coupled cavity the overall losses are smaller (greater) than the input transmission amplitude
and feature reflected powers on resonance (Pr = (1− ηimp)Pin) greater than zero (compare 2.1
(c)).

FPC: Transversal modes Light coupled into a resonator that exhibits a steady transverse
intensity profile that does not change after successive reflections off the mirrors is called a
(transversal) (TEMnm

3) mode of the cavity. This condition implies that the wavefront of the
resonator mode features the same radius of curvature as the one at each mirror end, making
the light wave retrace its original path [19]. With this in mind, the situation inside a resonator
is, therefore, to first-order, entirely described by the geometry of the cavity: the radii of
curvature Ri of the mirrors and their separation Lcav (compare Fig. 2.2 (a)).

The lowest order mode that features the simplest spatial distribution and has the most
practical application is the so-called fundamental mode (TEM00). Its intensity profile features
a decaying radially symmetric pattern that can be expressed as:

I(r, z) = I0

(
ω0
ω(z)

)2

exp
(
−2r2/ω2(z)

)
sin2(kz). (2.5)

It features a tightly focused waist 2ω0 from which the beam diverges outwards along
the cavity axis (here z-axis) described by ω(z). The sin2(kz) takes account for the standing
wave (longitudinal mode) that is present within a stable resonator. Typical Gaussian beam
parameters are summarized in Tab. 2.1.

2.1.2 Resonator stability and alignment

For most applications, the TEM00 mode is the most desirable mode to operate a cavity at.
It features the smallest beam waist, the least amount of beam divergence and a transversal
intensity pattern without nodes [20]. Assuming the input laser beam with laser power Pin
operates at the aforementioned fundamental mode, a perfectly aligned cavity would solely
host this particular input mode, i.e all higher-order TEMnm modes would not be supported
by the resonator. In this case one talks about a so-called mode-matched cavity, meaning
that the overlap between the input mode and cavity mode is at maximum (quantified by the
mode-matching factor ε).

3Transversal Electromagnetic Mode. The indices n and m correspond to the amount of nodes present in the
transverse intensity profile, see Fig. 2.2 (b) and (c).
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Chapter 2. Optics: Fiber Fabry-Perot cavities for optomechanical interaction

Formular Table for Gaussian Beams

bare intensity I0 = cε0
2 |E0|2 (2.6)

beam radius ω(z) = ω0

√
1 +

(
z

zR

)2
(2.7)

Rayleigh length zR = πω2
0/λ (2.8)

beam waist size ω0 =
(
λLcav
π

) 1
2
[

g1g2(1− g1g2)
(g1 + g2 − 2g1g2)2

] 1
4

(2.9)

g-parameters gi = 1− Lcav
Ri

(2.10)

Table 2.1: Formular Table displaying typical Gaussian beam parameters. For the radii of curvature,
the convention Ri < 0 for concave and Ri > 0 for convex mirrors is used.

(a)

x

y

(b)

x

y

(c)

Figure 2.2: (a) Geometry of the fundamental TEM00 mode. The cavity field is confined by two
opposing mirrors at position z1 with radius of curvature R1 and z2 with R2 respectively. The diameter
of the Gaussian intensity profile diverges from the beam waist 2ω0 to a value of 2ω(z) at position z.
(b) and (c) Transverse intensity profile of the TEM00 and TEM33 mode, featuring zero nodes and
three vertical and horizontal nodes, respectively. Images adapted from [19].

In reality, this overlap will most often not be maximized due to an overall misalignment of
the cavity geometry. This can reveal itself in many different forms (besides the more apparent
tilt and transversal offset between the mirror geometry itself), to name a few: transverse
displacement and tilt of the laser input axis with respect to the cavity axis, beam waist size
mismatch and longitudinal waist displacement. A sketch featuring these different scenarios is
displayed in Fig. 2.3 (a).

When misaligned, higher-order TEMnm modes will also couple to the cavity and will
exhibit, depending on the mirror geometry, non-degenerate resonance frequencies besides the
wanted fundamental frequency [21]. To combat this, mode-matching optics (e.g lense systems)
can be employed to reduce these effects. For rigid 4 single-mode fiber cavities (see section 4.4
), the magnitude of the misalignment will be determined by the quality of the fiber mirror

4A rigid fiber cavity contains the two opposing fiber mirrors in a bore of a glass ferrule, eliminating the need
to geometrically align the cavities.
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2.1. The Fabry-Perot cavity

fabrication. Since the options to improve the alignment post-production are limited, careful
consideration must be given to reduce fabrication-based flaws in the fiber mirror geometry.

(a) (b)

Figure 2.3: (a) Diagrammatic sketch of the field inside a cavity for 4 exemplary cases of misalignment.
The cavity mode for optimal alignment is outlined in black: (1) Transverse displacement ax between
the input laser beam and resonator. (2) Tilt angle αx between input laser beam and resonator. (3)
Mismatched beam waist between resonator (ω0) and input laser beam (ω′

0). (4) Mismatched beam
waist position between resonator (z0) and input laser beam (z′

0). (b) Stability diagram of an optical
resonator. The yellow shaded area describes all resonator configuration abiding by the stability criterion
0 ≤ g1g2 ≤ 1. Three special (symmectric) cases are highlighted: the planar cavity (R1 = R2 =∞), the
confocal cavity (R1 = R2 = Lcav) and the concentric cavity (R1 = R2 = Lcav/2).

A further aspect to consider is the stability of a resonator: not all arbitrary combinations
of mirror geometries will form a stable cavity. A resonator is considered stable if after an
appreciable amount of reflections the light beam stays inside the resonator. If this is not the
case, the resonator is said to be unstable. In a more concrete fashion, one can define a stability
criterion in terms of the g-parameters (see Tab. 2.1) which demands that the Rayleigh length
zR (see Tab. 2.1), the distance along the propagation direction from the waist to the position
where the area of the cross-section is doubled, must be a real number. This results in the
so-called stability criterion for spherical 5 mirrors:

0 ≤ g1g2 ≤ 1 (2.11)

With this, a stability diagram (compare Fig. 2.3 (b)) can be plotted which shows the
regions in which stable optical resonators can be built. It displays the edge cases for cavities
that are just on the outskirts of the stable region, and are therefore very prone to becoming
unstable with only slight misalignment. In this thesis, the most common types of resonators
employed will be the "semi-hemispherical" resonator consisting of one concave and one flat
mirror with both mirrors showing much larger radii of curvature Ri compared to the cavity
length Lcav. Further details on the specific cavity geometry parameters that were chosen can
be seen in section 2.4.

5A flat mirror is considered to be a spherical mirror with infinite radius of curvature.
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Chapter 2. Optics: Fiber Fabry-Perot cavities for optomechanical interaction

2.2 Physics of fiber Fabry-Perot cavities

In this section, a brief overview of the most relevant physical attributes of fiber Fabry-Perot
cavities (FFPC) is presented. The asymmetric reflection line shape associated with fiber-based
cavities is quantified by employing the "Bra-Ket" notation known from standard quantum
mechanics literature [22] to introduce spatial overlaps of optical modes in a compact fashion.
In analog to section 2.1.2, the optical mode-matching factor ε will be introduced to describe
the effects of (fiber) cavity misalignment on the optical coupling of the cavity.

2.2.1 Coupling to fiber Fabry-Perot cavities

To keep the notation compact and short, the electric fields Ei at hand will be separated
into two components: firstly, the complex amplitude of the field and its corresponding phase
factors Ei and secondly, the transversal mode profile |ψi〉 containing the spatial-distribution
information. This leads to a compact way to write down an arbitrary electric field Ei as:

Ei = Ei · |ψi〉

The (normalized) transversal mode distributions follow the Dirac "Bra-Ket" notation with
an accompanying inner product

〈
ψ | φ

〉
defined as

〈
ψ | φ

〉
=
∫ +∞

−∞

∫ +∞

−∞
ψ∗(x, y)φ(x, y)dxdy

=
∫ +∞

−∞
ψ∗x(x)φx(x)dx

∫ +∞

−∞
ψ∗y(y)φy(y)dy

(2.12)

which is recognized as the spatial overlap between two optical modes. Since all of the
transversal modes are considered to be fundamental Gaussian modes, the overlap integral
can thus be split up into two one dimensional integrals over the respective (x, y)-plane —
at coordinate z0 — perpendicular to the propagation axis z (see Eq. 2.12). It is therefore
sufficient to only consider one spatial direction (from this point on just the x-coordinate) to
understand the physics of fiber-mirror cavities.

To calculate the reflective line shape of a fiber cavity (in analogue to section 2.1.1 in
free-space coupled cavities), the individual contributions to the electric fields involved in the
cavity field are named as follows: the directly reflected field from the mirror on the in-coupling
side |ψr〉, the forward (+) and backward (−) propagating guided fiber mode

∣∣∣ψ±f 〉 and the
intra-cavity mode

∣∣∣ψ±cav

〉
. The mode-matching factor ε that determines how efficient the

in-coupling mode couples to the intra-cavity mode is given by [23]:

ε =
∣∣∣∣〈ψ+

cav | ψ+
f

〉∣∣∣∣2 (2.13)

For free-space coupled cavities, the overall in-coupling efficiency is given by the relative
alignment of the cavity mirrors and the guiding of the in-coupling laser propagating into the
cavity. Assuming that, in the case for fibers, the mirrors are fixed (e.g inside a ferrule) and
the in-coupling of the laser beam is not further altered (e.g. by GRIN 6 - fiber assemblies
[24]), the mode matching factor ε is determined by the geometry of the spherical mirror that

6Graded-Index (GRIN)
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2.2. Physics of fiber Fabry-Perot cavities

(a) (b)

Figure 2.4: (a) Cross-section of the fiber end facet in the x-z-plane for the geometrical and optical
considerations for approximating the mode-matching coefficient ε. To simplify, the fiber mirror geometry
is to be assumed as a perfect circular shape. The fiber mirror displayed here features two common
forms of fiber misalignments: a decentered fiber mirror compared to the fiber core (quantified by dx)
and a tilt of the intra-cavity mode (quantified by αx). (b) Mode-matching coefficient ε0 for different
mirror radii of curvature with an exemplary fixed fiber mode radius ωf = 5 µm.

is shot onto the fiber end facet (see Fig. 2.4 (a)). In a simplified model assuming fundamental
Gaussian modes, the mode matching factor epsilon ε of a perfectly aligned and centered cavity
is given by [25]:

ε0 = 4(
w2

f
w2 + w2

w2
f

)2
+
(
kwfw

2R

)2
(2.14)

with the fiber mode radius ωf , Gaussian beam radius ω (for a particular z-point), wave
vector k and mirror radius of curvature R. A diagram displaying the optical mode matching
coefficient ε0 for a fixed fiber mode waist ωf and different mirror radii of curvature R is shown
in Fig. 2.4 (b).

If one now includes potential misalignment either via a decentered mirror shot (compare
Fig. 2.4 (a)), mirror cleave angle 7, a tilted fiber mirror or the two fiber-mirrors not being
vertically aligned and centered with respect to each other, the total mode matching factor
(considering both x- and y-directions) from Eq. 2.14 is modified to:

ε = ε0e
−2d2/d2

ee−2α2/α2
e

with effective length de and angle αe depending on the geometry of the cavity [23]. With
this, a cavity is said to be perfectly mode matched if there are no geometric and optical
misalignments, the beam waist of the in-coupling fiber mode and cavity perfectly match and
the wavefront curvature is sufficiently large compared to the beam waist of the system.

7For the fabrication of fiber-mirrors, a straight clean fiber-end-facet is required. A potential slant from the
cutting/cleaving-process will also introduce misalignment that will hurt the overall coupling-efficiency.
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Chapter 2. Optics: Fiber Fabry-Perot cavities for optomechanical interaction

2.2.2 Reflection line shape of fiber Fabry-Perot cavities

As touched upon in section 2.1.1, the free-space coupled cavity features a symmetric reflection
line shape that — close to resonance — can be approximated by a Lorentzian line shape,
where the (coupling) depth of the line shape on resonance is given by PCD = ε · ηimp · Pin. For
a fiber-based cavity system, the major difference arises from the additional mode filtering that
takes place inside the fiber core: as in the free-space case, the total reflected field that will be
measured consists of the immediately reflected part of the input power Er given by:

Er = r1 · Ein |ψr〉 ' Ein |ψr〉 (2.15)

interfering with the leakage from the intra-cavity field (compare Fig. 2.5)

Eleak(∆v) = −t1 · Ecirc · r2e
iφ
∣∣∣ψ−cav

〉
= −Ein

t21r2e
iφ

1− r1r2eiφ

〈
ψ+

cav | ψ+
f

〉 ∣∣∣ψ−cav

〉 (2.16)

Figure 2.5: Schematic representation of the light-coupling procedure within a fiber-mirror cavity. The
back-reflected field ENG that is filtered out of the fiber core is lost and scattered into the surrounding
fiber cladding. The total output field Eout(∆ν) is thus given by the interference between the immediately
reflected field Er and the cavity leakage field Eleak. A small part of the field Et is also transmitted
through the second fiber mirror.

where Ecirc is the intra-cavity electric field amplitude introduced in section 2.1.1, φ =
2π∆ν/∆νFSR the round trip-phase with detuning ∆ν from the cavity resonance frequency
and additional mode overlap

〈
ψ+

cav | ψ+
f

〉
between fiber and intra-cavity mode.

Both parts are propagating through the fiber mirror core back to the measurement
apparatus, but only the spatial mode that overlaps with the fiber-core mode can be efficiently
coupled and guided back into the fiber, the residue is therefore filtered out into the surrounding
fiber-cladding (see Fig. 2.5). With this, the light that is guided back into the fiber core reads:

Eout (∆ν) =
(〈
ψ−f |Er +

〈
ψ−f |Eleak (∆v)

)
| ψ−f

〉
.

= Ein
(〈
ψ−f | ψr

〉
− t21r2e

iφ

1− r1r2eiφ

〈
ψ+
cav | ψ+

f

〉〈
ψ−f | ψ

−
cav

〉) ∣∣∣ψ−f 〉 . (2.17)
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2.2. Physics of fiber Fabry-Perot cavities

Figure 2.6: Illustration of the contributions to the overall reflection line shape (red) of a fiber cavity.
The overall reflected power is reduced by the mode-filtering factor ηr with on-resonance coupling depth
PCD = ηdip · ηr · Pin = ε · ηimp · ηr · Pin.

The reflected power can thus be Taylor-expanded (∆ν � ∆νFSR) to:

Pout (ν)
Pin

=
∣∣∣∣∣Eout (ν)

Ein

∣∣∣∣∣
2

= ηr − ηL

( 1
1 + ν2 −A

ν

1 + ν2

)
(2.18)

with the normalized detuning ν = ∆ν/κ where κ = ∆νFWHM/2 is the so-called cavity
decay rate. The resulting line shape (see Fig. 2.6) of the reflected power is a combination of a
symmetric Lorentzian lineshape with amplitude ηL and asymmetric dispersive lineshape with
overall amplitude ηL · A, which depend on the overlap integrals 〈ψ−f | ψr〉 and 〈ψ+

cav | ψ+
f 〉

(for further details, refer to [25]). The reflection baseline of the fiber cavity is reduced by a
factor ηr =

∣∣∣〈ψ−f | ψr〉∣∣∣2 compared to the free-space coupled resonator, which describes the
mode-overlap of the immediate reflected input field with the back-propagating fiber-core mode.

2.2.3 Additional effects to consider

Clipping losses As touched upon in section 2.1.1, the Finesse of a resonator with mirrors
Mi , i = 1, 2 is given by the inverse of the sum of all losses associated with the resonator.
More specifically, these typically consist of intrinsic scattering Lscat,i, absorption Labs,i and
transmission losses Ti of the reflective coating on the fiber-end facet. They are coating-specific
losses that can be found in any Bragg-mirror-based cavity and are not unique to fiber cavities.
An additional loss channel that is especially relevant for FFPCs however, is the so-called
clipping loss Lclip and can be estimated to [16]:

Lclip,i = exp
(
− D2

i
4w2

i

)
. (2.19)

If the size of the beam radius ωi of the cavity mode at the fiber mirror end facets is
comparable to the mirror diameter Di itself, an appreciable amount of light will not be
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reflected back into the resonator but instead will be clipped due to the finite mirror diameter
size. This leads to the updated Finesse formula:

F = 2π∑
i=1,2

(
Labs,i + Lscat,i + Lclip,i + Ti

) . (2.20)

With this addition, the Finesse of a fiber-based cavity will now depend on the chosen
cavity length Lcav and can not be arbitrarily selected without consequence. It is therefore
important to always choose a cavity length below the clipping threshold to ensure that no
clipping of the cavity light mode takes place. For the cavities utilized here, clipping losses
generally start to take place above Lcav ≈ 50 µm but are not of major concern for the typical
cavity lengths of Lcav = 20− 30 µm employed in this thesis.

Polarization-mode splitting Polarization-mode splitting lifts the degeneracy between the
orthogonal linear-polarization modes inside the cavity, leading to a frequency splitting ∆vspl
of their resonance frequencies [26]:

∆vspl
∆vFWHM

= F2π∆ϕ (2.21)

with the differential phase-shift ∆φ between the two orthogonal modes. Next to stress-
induced birefringence in the mirror coatings, fabrication-flaws in the fiber mirror geometry
(e.g elliptical mirrors) are the largest contributor to polarization-mode splitting in fiber-based
cavities. Additional corrections to the paraxial resonator theory [27] show that the resonance
frequency of a linearly polarized cavity mode depends on the mirror’s radius of curvature
along the polarization direction. Ellipticity in the laser-machined fiber mirrors would therefore
introduce an unwanted splitting of the cavity resonance.
However, since the cavities used in thesis are all operating in the low Finesse regime (above
GHz linewidths), the effect of the mode splitting (MHz) on the cavity resonance (for decently
well-fabricated fiber mirrors) is minimal and can be safely neglected.

2.3 Fiber mirror fabrication
This section will give a very brief introduction to the laser ablation process for carving spherical
mirrors into fiber-end facets used in our in-house fiber fabrication facility. Furthermore, a
brief description of how said mirrors are implemented into the experiment is given. As the
fabrication of laser-machined fiber mirrors is not the main focus of this work, only a very brief
introduction suffice for the context of this thesis is given. For a more in-depth exploration,
refer to one of the many theses dedicated to our in-house fiber mirror fabrication (e.g [24],
[28]).

To fabricate spherical micro-depressions on cleaved fiber-end facets, a high-power CO2 laser
operating at λ = 9.3 µm is employed. Since the laser wavelength lies within the absorption
peak of fused Silica (SiO2) [29], the optical power of the laser can be transformed into heat
which effectively evaporates the illuminated portion of the fiber-end facet. To efficiently
ablate surfaces into suitable micro-mirror structures, low surface roughness and ellipticity are
required, which can be achieved by applying radially symmetric Gaussian beam pulses to the
surface. After the shooting process, a thin layer of molten silica remains and smoothens the
surface of the fiber as it solidifies. In the end, a Gaussian-like depression profile is left on the
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surface of the fiber, which acts as an approximately spherical mirror depression 8 close to the
origin of the shot, with typical radii of curvature of R ≈ 150− 250 µm.
After the ablation process, the shot fibers are then sent to a coating company 9 that deposit
alternating dielectric layers of Ta2O5 (n = 2.10) and SiO2 (n = 1.45) (each with a thickness
of λ/4) to create Bragg-mirrors. With this, reflectivities of up to 99.99% over a frequency
range of approximately 770− 820 nm can be achieved. To now make the shot and coated fiber
mirrors usable for the experiments, a commercial fusion splicer machine 10 is used to fuse the
fiber mirror to a commercial single-mode fiber patch cable with build-in fiber-couplers that
allow for simple integration into optical setups.
For this, a few centimeters of the fiber-end opposite to the mirror are inserted into a FeCl3
solution for 15 minutes, stripping off the outer protective copper coating of the fiber and
exposing the bare cladding layer. A manual fiber cleaver 11 is used to cut a straight end facet
of the bare fiber, needed to ensure minimal optical losses in the spliced interface (typically
around 0.2dB after a successful splice). The same cleaving procedure is then performed on
half of a commercial single-mode fiber patch cable, after which both fiber ends can be properly
spliced together.

2.4 Hybrid fiber Fabry-Perot cavities

This section details how the fiber mirrors are actually utilized in the experiments and the
corresponding measurement techniques employed to infer information about the cavity. The
setup is based on a hybrid cavity consisting of an in-coupling fiber mirror that couples light
into the resonator opposing a macroscopic 0.5 inch flat mirror. The latter will later host
the different 3D laser written polymer structures for the optomechanics experiments, but for
now, is just assumed to be bare. Information about the cavity is extracted using a standard
reflection-based measurement technique explained in the following. As this setup plays a
crucial role for all of the following experiments in this thesis, a more general overview of the
system is given ignoring the optomechanical context for now.
The hybrid cavity setup and the corresponding reflection-based measurement scheme are
depicted in Fig. 2.7 (a). A wavelength-tunable laser 12 set to λ = 780 nm with roughly 20 mW
output power is guided through a Polarizing-Beam-Splitter (PBS) into the fiber-coupler input
of the spliced fiber mirror (refer to section 2.3). Waveplates are set up before and after the
PBS and are adjusted in a way that any back-reflected light experiences a 90◦ rotation in
the polarization and exits the PBS on the port that leads to a photodiode. Most of the light
that is coupled into the single-mode fiber mirror (transmission T1 = 2000ppm and curvature
R ≈ 150 µm) is promptly reflected back towards the photodiode. If, however, the cavity length
Lcav is equal to λ/2 a resonance occurs and the back-reflected light destructively interferes
with the field that is leaking out of the cavity (compare section 2.2).

The power (voltage) measured on the photodiode would reduce given by the coupling depth
of the cavity, and in the ideal case, go down to zero. Since it is difficult to modify the cavity

8This is the best-case scenario. Any factors that "pollute" the laser-beam profile — e.g effects such as
astigmatism — may lead to unwanted mirror ellipticity [25].

9Laseroptik GmbH: https://www.laseroptik.com/
10Ericsson FSU PM
11Fitel S-324 Fiber Cleaver
12Lion Series: TEC-500-0770-040
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z

(a) (b)

Figure 2.7: (a) Reflection-measurement scheme. The optical path features a λ = 780 nm laser beam
passing through a Polarizing-Beam-Splitter (PBS) into the hybrid fiber mirror cavity. The fiber mirror
is stationed on a Piezo-Translation-Stage (PTS) that is driven by a triangular voltage signal produced by
a function generator (WGEN). The reflection signal of the cavity is recorded with a photodiode (PDrefl)
that is connected to an oscilloscope. (b) Exemplary measurement of two consecutive resonances of the
fundamental mode separated by the FSR (∆νFSR) with higher-order transversal modes in-between.
The two mirrors are separated by Lcav = (30 ± 3) µm. For illustrative purposes, this specific cavity
scan is taken with a polymer structure inside the cavity.

length to such a precise degree, a constant scan of the cavity length is needed to continuously
"hit" the resonance condition. For the hybrid cavity, this is achieved by stationing the fiber
mirror onto a Piezo-Translation-Stage (PTS) that is driven by an external (triangular) voltage
signal to scan the z-position of the fiber mirror and therefore the overall cavity length Lcav.
The corresponding reflection signal on the photodiode is then given by the familiar asymmetric
lineshape introduced in section 2.2.2 in units of voltage vs. time. To convert the time-axis into
frequency, the resonator-intrinsic frequency reference given by the FSR (∆νFSR = c/2Lcav) can
be used for calibration. The corresponding cavity length can be approximated with the help
of a digital-microscope 13. As the cavity used here is a mix of fiber-mirror and macroscopic
mirror, the corresponding coupling depth of the reflection signal can be improved by ordinary
mode-matching techniques to counteract misalignments of the types discussed in section 2.1.2.
To that end, the flat mirror (T2 = 10 ppm) is attached to a kinetic optical mount that allows
to adjust the relative angles θx and θy between fiber and flat mirror. An exemplary reflection
signal of a full FSR scan of the cavity is shown in Fig. 2.7 (b). It features a Finesse of
F = ∆νFSR/∆νFWHM = 1640± 60 with a coupling depth of 12.8%± 0.3%.
For a well-fabricated fiber mirror with proper cavity mode-matching, Finesse-values of up to
3000 with coupling depths of up to 95% can be reached 14. Fiber mirrors that meet these
standards are then used for the later experiments.

13Dino-Lite Digital-Microscope (220x) mag.
14For these purposes, such a highly-overcoupled cavity is actually preferable, as any (minor) misalignment of

the two mirrors just leads to higher coupling depths [25].
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Chapter 3
Mechanics: Polymer membranes for
membrane-in-the-middle resonators

In this chapter, the polymer membranes used inside the membrane-in-the-middle resonators
as the mechanical constituent are established. A brief introduction to the general fabrication
procedure is given, followed by an estimation of the physical properties of the membrane with
finite element simulations. Finally, the optical quality of the polymer membranes is discussed.

3.1 Polymer membrane fabrication with direct laser writing

Direct laser writing Direct laser writing (DLW) is a lithography technique used to print
complex three-dimensional structures. The technique utilizes photoresists that form long
polymer chains due to the induced chemical photo-polymerization by exciting the molecules
with a tightly focused laser beam. This allows for a very localized polymerization process,
printing structures with minimal feature sizes of up to 100 nm [30]. To this end, the commercial
NanoScribe 1 system is used to print the dielectric membranes that will be inserted into fiber-
cavities to form Membrane-in-the-Middle resonators. Since the printing of these structures
has mainly been outsourced to the Linden Group, a very brief overview of the printing process
sufficient for the context of this thesis will follow. For further details, consider [31].

The IP-S photoresist The commercial IP-S photoresist features the highest surface quality
2 out of all the commercially available NanoScribe photoresists and is also utilized to print
the dielectric membranes for this thesis. It mainly consists of monomers and photoinitiators,
which create radicals when excited with ultraviolet light (λ ≈ 390 nm). These radicals then
further react with the monomer molecules to perform polymerization, forming long polymer
chains which constitute the wanted geometry.
Concerning its optical properties, the IP-S resist features a refractive index n at λ0 = 780 nm
of roughly n(λ0 = 780 nm) ≈ 1.5 (compare Fig. 3.1 (a)) after UV-curing. The corresponding
absorption coefficient of the cured photoresists at 780 nm is roughly 3 · 10−2 mm−1 (see Fig.

1NanoScribe GmbH: https://www.nanoscribe.com/
2Information acquired from an E-mail exchange with a NanoScribe GmbH employee.
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(a) (b)

Figure 3.1: (a) Refractive index n against wavelength λ for the IP-S photoresist. As the exposure time
to UV-light increases, the refractive index increases accordingly. Here the value for n after 10 minutes
of exposure time is used. (b) Extinction coefficient against wavelength λ for the IP-S photoresist. The
green curve corresponds to the relevant data for UV-cured photoresists. Images taken from [32].

3.1 (b)). With this, absorption losses for structure thicknesses of a few microns are below 50
ppm and completely negligible compared to the transmission losses of the mirrors.

The NanoScribe system The DLW is performed by the commercial NanoScribe Pro-
fessional GT (see Fig. 3.2 (a)) which utilizes a 780 nm pulsed femtosecond laser to induce
polymerization via two-photon absorption at double the excitation wavelength of the pho-
toresist [33]. The major benefit compared to the standard single-photon absorption at the
excitation wavelength is due to the suppression of higher-order lobes of the (Airy) intensity pat-
tern of the laser beam. This increases the achievable spatial resolution of the DLW technique
[31].

3D-Piezo translation stage

Flat mirror

Figure 3.2: (a) NanoScribe system used for the DLW (taken from [31]) (b) Schematic of the Dip-in
writing configuration (taken and edited from [31]) (c) Top-down view of a microscope image of a
polymer drum array printed onto a substrate. Image courtesy of Alexander Faßbender.

The so-called "Dip-in" configuration is used to print the desired geometry out of the
photoresist: A droplet of the liquid photoresist is placed onto a substrate (or in this case a flat
mirror) which is connected to a 3D-piezo-translation stage that allows for very precise shifts of
the substrate position of up to 10 nm 3 (see Fig. 3.2 (b)). The laser objective is then "dipped"

3The writing resolution is not limited by the precision of the piezo element but rather the confinement of
the laser beam.
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inside the photoresist and the laser power is increased above the polymerization threshold of
the resist. This allows to locally polymerize the photoresist at the beam focus. By shifting
the position of the photoresist with respect to the beam focus, the desired geometry can be
printed out. After the DLW process, any unpolymerized resist is washed off, followed by an
additional external UV-cure to polymerize any remaining small portions of photoresist trapped
inside the already cured polymer structure. For this work, small drum or table-like structures
of a few tens of microns in size are of interest for the optomechanical experiments. Fig. 3.2 (c)
shows a top-down view of an exemplary print of such drum-like structures onto a substrate.

3.2 Polymer membrane geometry and COMSOL simulations

In this work, the optomechanical system will consist of a (fiber) Fabry-Perot cavity with
integrated polymer membranes. As section 3.1 already gave a brief overview on how these
polymer structures are fabricated, the focus will now be on the physical properties of the
polymer (drum) membrane, especially on their eigenmodes of vibration as they form the basis
for the optomechanical interaction in the later experiment. To now estimate the expected
real physical parameters, finite element simulation with the multiphysics simulation software
COMSOL 4 are performed. These then lead to the wanted eigenfrequencies Ωm of the mechan-
ical motion of the drum and its corresponding displacement fields u(x, y, z) (quantifying the
deformation of the membrane).

(a) (b)

Figure 3.3: (a) Side and top-down view of the drum geometry (b) Cross-section of the drum geometry
and its displacement field for the lowest order vibrational eigenmode on top of a cutout of a flat mirror.
The red colored area corresponds to the maximum displacement.

For this purpose, the drum geometry (displayed in Fig. 3.3 (a)) is chosen in a way that
strikes a balance between sturdiness and low effective mass (meaning higher optomechanical
coupling) while also being well compatible with the optical mode of the cavity. It features a
Dout = 65 µm wide and d = 1.3 µm thick circular membrane top with a circular-cut pattern

4COMSOL Multiphysics: https://www.comsol.com/
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Qm Ωm Γm/2π meff EY νP Dout Din d L2

2.6 · 106 357 kHz 0.14 Hz 1.9 ng 2.9 GPa 0.4 65 µm 35 µm 1.3 µm 8.2 µm

Table 3.1: Results of the finite element simulation of the lowest order vibrational eigenmode of the
drum. The used mechanical properties and the corresponding drum geometry are also displayed.

around the edge of the membrane, which allows for less restricted motion of the inner drum
plate (roughly Din = 35 µm in diameter). The membrane is supported by four curved feet
around the membrane edge, each with a total height of about L2 = 8.2 µm. The whole
structure sits on top of a flat mirror to form one side of the Fabry-Perot cavity. Due to the
different speeds of sound in the polymer drum and flat mirror, the transfer of energy between
the two is "impedance mismatched", meaning that any leakage of the vibrational energy into
the flat mirror is strongly suppressed. The Young’s modulus EY (essentially an extension of
the spring stiffness of the 1D harmonic oscillator to continuous bodies) and Poisson’s ratio νP
(quantifying the deformation of the body due to axial- and transversal strain) that describe
the mechanical properties of the drum are taken from [34], and collected in Tab. 3.1. It is
important to note here that the mechanical properties of the photoresist are strongly dependent
on the DLW fabrication process, as demonstrated in [35]. Since it is difficult to adjust these
parameters to the specific writing settings to get a more accurate prediction, the simulations
(as of right now) only serve as a rough guideline of what to expect in the experiment. In
the future, the experimental results will then be used to draw conclusions about the actual
mechanical properties of the polymer drum.
As a first step, only the fundamental eigenmode corresponding to the alternating up-and-down
motion of the drum membrane is considered. The resulting displacement field describing
its motion is represented in Fig. 3.3 (b). With this, the expected eigenfrequency Ωm can
be approximated. The effective mass of the mechanical mode of the drum is calculated by
considering the displacements fields u(x, y, z) of the motion [36]:

meff =
∫
V dV ρ(x, y, z) · |u(x, y, z)|2

maxV
(
|u(x, y, z)|2

)
with V as the full simulation volume and ρ(x, y, z) as the local density. It is used to deter-

mine the zero-point-fluctuation amplitude xzpf and plays an important role in approximating
the optomechanical coupling later on. Since the simulations are performed in vacuum, the
primary loss channel of the drum motion is just given by the internal dampening from the
deformation process itself. To quantity this, the so-called mechanical quality factor Qm = Ωm

Γm
is introduced, with the mechanical linewidth Γm/2π. The design of the drum membrane is
chosen in a way to achieve high mechanical quality factors, but a rigorous process to find
the best possible design with the highest Qm possible has not been performed yet. Tab. 3.1
displays the relevant simulated physical parameters for the drum geometry.
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3.3. Optical quality of laser written polymer structures

3.3 Optical quality of laser written polymer structures

As a consequence of introducing dielectric objects (polymer drums) into a Fabry-Perot cavity,
the optical quality of the cavity will suffer due to scattering and absorption at the dielectric.
High optical quality is generally desired for optical resonators, but also especially relevant for
optomechanical experiments since reaching interesting regimes such as the resolved-sideband
regime [13] or the strong-coupling regime [37] is only possible with low optical losses inside
the resonator. To quantify the optical quality of the resonator, the already introduced Finesse
F (refer to section 2.1.1) is utilized. In the case of a Fabry-Perot resonator with a dielectric
element placed in-between the two mirrors, the Finesse reads:

F = 2π
T1 + T2 + L1 + L2 + Lclip + Lpoly, abs + Lpoly, scat

(3.1)

with transmission losses T1 = 2000 ppm (T2 = 10 ppm) and intrinsic coating losses
L1 = 15ppm (L2 = 15ppm) of mirror 1 (2) 5. The clipping losses Lclip have already
been introduced in Eq. (2.19). The term Lpoly, abs + Lpoly, scat takes care of the absorption
and scattering losses at the dielectric for a full cavity round-trip. As mentioned in section 3.1,
the commercial NanoScribe photoresists feature miniscule absorption losses that can be safely
neglected for feature sizes of up to a few micrometers. The main contribution to the losses
from the polymer comes from light scattering at the surface of the dielectric. To quantify these
losses, a test cavity system is build consisting of a fiber-mirror for in-coupling light and a flat
mirror that hosts a staircase-like NanoScribe-printed polymer structure. It makes use of the
reflection-based measurement scheme introduced in section 2.4. A schematic of the test cavity
is depicted in Fig. 3.4. The staircase features 9 distinct steps, each with a 25 µm × 25 µm
surface area and step height of 50 nm (with a total height of roughly λ/2).

Figure 3.4: Test cavity consisting of an in-coupling fiber mirror and a flat mirror that hosts a polymer
staircase. The inset depicts the geometry of the staircase. The flat mirror is attached to a motorized
stage (Standa: 8MT167-25) that allows for y-z-translations of submicron precision. The cavity length
L1 + di is kept constant at roughly 30 µm.

The idea now is to place the fiber at a specific position over the staircase, measure a cavity
resonance and its corresponding Finesse and then repeat the same measurement at a different

5These specific transmission losses of the mirrors are selected to improve the overall impedance-matching
after the polymer structures are introduced inside the cavity.
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(a) (b)

Figure 3.5: (a) Maximum losses of the averaged Finesse map scans for different exposure times to
NMP. The x-axis is not properly scaled and represents the additional exposure time (denoted by a
"+") experienced by the staircase sample. (b) Maximum losses of the averaged Finesse map scans for
different exposure times and plasma powers with the plasma cleaner.

position on the staircase. With this, the complete surface of the staircase can be mapped to
a corresponding Finesse value, effectively creating a "Finesse map" for the staircase. Since
the cavity mode width (ω0 ≈ 3− 4 µm) is rather large compared to the staircase dimensions,
the resulting Finesse distribution will already be subject to some spatial averaging from the
get-go, nevertheless the resolution obtained here is sufficient to make statements about the
optical quality of the polymer structure.
Due to the λ/2-periodic intensity distribution of the cavity field, measuring the Finesse at the
different steps corresponds to a different intensity of the cavity field at the dielectric surface.
Since the scattering losses depend on the intensity at the scattering surface (i.e the staircase sur-
face), the Finesse also experiences such a periodic modulation across the staircase height. The
amplitude of this modulation is then directly proportional to the expected scattering losses. A
Finesse map scan of a polymer staircase and the corresponding induced losses are shown in Fig.
3.6 (a). The upper part of the image depicts the spatial Finesse distribution of the staircase
on the flat mirror. Each pixel stands for a measurement and every 2 µm such a measurement
is taken. It shows the expected periodic modulation of the Finesse across the length of the
staircase. The expected geometry of the staircase is well reproduced, but the dimensions of the
staircase in the Finesse map are generally smaller than the real-life geometry. This is mostly
due to increased losses at the edge of the structure combined with the rather large cavity mode
width. The latter is also most likely the reason why the individual staircase steps are not
resolved in the map itself. In the lower graph, the corresponding losses (in ppm) induced by
the polymer Lpoly (here mainly scattering losses) across the length of the staircase are depicted.

The losses are averaged over the width of the staircase and any data points that clearly
correspond to damage (or persistent dust and dirt accumulation) of the polymer are excluded.
The situation at which the intensity is maximized at the polymer surface is most relevant for
the later experiments since the coupling between optical and mechanical mode is maximized
if the field is maximized at one side of the drum membrane surface (see section 4.1.4). It is
therefore interesting to reduce the polymer induced losses Lpoly at the dielectric surface for an
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anti-node in the cavity field (i.e maximal losses). From Fig. 3.6 (a) it is clear that the losses
induced by the polymer greatly exceed any other losses of the cavity and are therefore the
limiting factor on the overall Finesse. The goal now is to find ways to reduce these losses
while keeping the overall geometry of the polymer structure in tact.

3.3.1 Improving the optical quality of polymer structures

To improve the optical quality of the polymer structure, two common methods for surface
polishing polymer materials are employed. As a first step, the organic solvent N-Methyl-2-
pyrrolidone (NMP) is used to attempt to chemically polish the polymer surface.

(a)

(b)

Figure 3.6: (a) (top) Measured Finesse Fmeas on the unpolished staircase normalized by the reference
Finesse Fref without the staircase against the y-z-position on the flat mirror. Zero Finesse corresponds
to a measurement of a cavity reflection resonance with coupling depth below 3% where fitting the
resonance becomes unsuccessful. (a) (bottom) Corresponding losses induced by the polymer averaged
over the width of the staircase against the z-position. The losses are calculated by measuring the
Finesse and solving for the polymer losses Lpoly in Eq. (3.1). (b) Same staircase sample as in (a) but
polished using the plasma cleaner. The periodicity of the Finesse across the z-position is somewhat lost
at the end of the staircase sample hinting at a non-linear polymer removal of the staircase due to e.g
unwanted charge accumulation.

A staircase sample is progressively exposed to NMP for certain exposure times. After
each exposure, a Finesse map is taken to quantify the effects of the chemical on the staircase.
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The resulting maximum losses of the averaged Finesse against the exposure time to NMP
are displayed in Fig. 3.5 (a). From this, it is clear that the NMP did not have the desired
effect 6 and the Finesse maps after each consecutive NMP exposure barely showed any change.
Increasing the exposure times even further only leads to the staircase detaching from the flat
mirror.
As a second step, a low-pressure plasma cleaner device 7 is utilized. A plasma source generates
highly reactive chemicals from O2. The resulting chemicals (dubbed reactive oxygen species)
occupy free chain ends of the polymer to create degradation products such as CO2 that can
be easily removed afterwards. This improves the surface roughness of the staircase samples
and therefore reduces the losses due to light scattering. The same sample already introduced
in Fig. 3.6 (a) is then progressively exposed to the plasma cleaner for certain exposure times
and plasma powers. A Finesse map of the sample after the final treatment step is displayed
in Fig. 3.6 (b). Compared to the untreated sample, it features a more homogeneous Finesse
distribution and also a shift of the position of maximum Finesse. This is due to the removal of
the first few surface layers of the staircase by the plasma cleaner, as it is reducing the overall
staircase height by a few nanometers. The resulting maximal losses for all of the treatment
steps are depicted in Fig. 3.5 (b). Due to time constraints, the surface polishing could not be
further continued beyond this first testing and the full potential of this technique for surface
polishing the polymer structures is not yet fully known. Nevertheless, the maximum losses are
reduced by more than 30% by the plasma cleaning procedure, which already shows promise in
improving the optical quality of the polymer structures.

6The NMP might polish the surface at too small of a scale to affect the optical quality of the polymer and is
thus not measurable here.

7diener electronic: Zepto 119167

22



Chapter 4
Optomechanics: Cavity optomechanics with
polymer membranes

The field of cavity optomechanics explores the interaction between electromagnetic radiation
and mechanical motion in optical resonators. Here, a novel platform that uses a "Membrane-
in-the-Middle" (MIM) configuration is studied. It consists of a dielectric membrane (the
mechanical resonator) inserted between the two mirrors of a Fabry-Perot cavity (hosting
optical resonator modes). While some MIM experiments also make use of fiber mirrors to build
MIM cavities ([38], [39]), most experiments utilize (commercial) silicon nitride membranes as
the mechanical constituent that is integrated into the optical cavity system. These membranes
offer favorable mechanical and optical properties as required for optomechanical experiments.
Here, a different approach is pursued: laser written polymer membranes (drums) are utilized
as the mechanical resonator element. The extreme flexibility of the laser writing process allows
for direct integration of the mechanical resonator into the microscopic cavity and the direct
fiber coupling offers great interfacing capabilities.
The goal of this thesis is to show a proof of principle operation of this novel MIM system
and also determining its optomechanical coupling strength. The following sections give an
overview of the novel optomechanical system, the expected coupling, the measurement setup
and the experimental characterization of the system.

4.1 The optomechanical interaction

First, this section presents the MIM optomechanical system that was developed during
this thesis and introduces the basics of the optomechanical interaction. Next, the coupling
mechanism responsible for the interaction in this system is explained and the corresponding
calculations to approximate the coupling strength are detailed.

4.1.1 A membrane-in-the-middle resonator

The MIM system consists of a cavity that is confined by two mirrors with a dielectric membrane
in-between. For a graphical representation of the cavity geometry, see Fig. 4.1 (a). Here, the
in-coupling mirror consists of an end facet of a single-mode fiber with a concave center area
created via laser ablation (see Fig. 4.1 (c)). The fiber end facet is covered with a reflective
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coating to form a Bragg-mirror (for details, refer to section 2.3) with transmission losses of
T1 ≈ 2000 ppm. Typical single-mode fiber diameters are in the range of 125 µm, with fiber-core
diameters of a few microns. Opposing the fiber mirror is a 0.5 inch flat mirror with T2 ≈ 10
ppm transmission. These parameters have been chosen to improve the impedance-matching of
the resulting MIM cavity since the polymer membrane will inevitably introduce further losses
into the resonator on the order of some 100 to 1000ppm (refer back to section 3.3).

(a) (b) (c)

Figure 4.1: (a) Schematic diagram of the geometry of the MIM-resonator. It features two opposing
mirrors: a fiber mirror (with transmission T1) used for in-coupling light into the resonator (blue dashed
border) and a flat mirror (with transmission T2), hosting the polymer drum structure (green dashed
border) at a spatial separation of Lcav. (b) Top-down view of a printed polymer drum structure
corresponding to the green dashed border in (a). Two main lengths define the overall geometry of
the drum structure: the inner drum membrane diameter Din ≈ 35 µm and the total drum diameter
Dout ≈ 65 µm. Image courtesy of Alexander Faßbender. (c) SEM image of a typical fiber mirror
corresponding to the blue dashed border in image (a). It features a small spherical depression shot
onto the fiber-end facet that acts as a spherical mirror when covered with reflective coating. Image
taken from [16].

The hybrid cavity (fiber mirror plus flat macroscopic mirror) is chosen since the flat mirror
offers more flexibility to print multiple different NanoScribe polymer structures on just one
single optical element for first characterization purposes. Later on a complete FFPC based
realization is planned. The membrane used in the MIM setup is a NanoScribe-written dielectric
polymer drum, described in detail in section 3.2. An image of the drum geometry is shown
in Fig. 4.1 (b). It features cuts on the membrane, such that the inner drum part is only
connected to the supporting frame by small tethers. These are introduced to increase the
expected mechanical quality factor Qmech. Supporting feet (roughly 8 µm tall) hold up the
membrane and rest on the flat mirror. The coupling of the suspended membrane to the optical
cavity field is discussed in the following sections.

4.1.2 Hamiltonian formulation

To describe the coupled system of electromagnetic radiation and mechanical motion, a Hamil-
tonian formulation is applied [13]. În our case, the radiation mode is given by an optical
eigenmode of the FFPC 1. The mechanical motion that interacts with the optical field is
provided by the vibration of a semi-transparent dielectric membrane. However, in a first step,
a generic "mirror-on-a-spring" system is discussed, as this simple system sufficiently describes

1Microwave modes (eg. in an LC circuit) are also very commonly used to couple to mechanical motion and
constitute the branch of Microwave-Optomechanics.
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4.1. The optomechanical interaction

the optomechanical interaction and most optomechanical systems can be mapped to the same
Hamiltonian. A pictorial representation of this system is depicted in Fig. 4.2. The uncoupled
optical (ωcav) and mechanical (Ωm) modes 2 within this model are represented by two harmonic
oscillators (ignoring their zero-point energy contributions) in the bare Hamiltonian:

Ĥ0 = ~ωcavâ
†â+ ~Ωmb̂

†b̂ (4.1)

with photonic (phononic) annihilation and creation operators â (b̂) and â† (b̂†) obeying the
standard commutation relation

[
â, â†

]
= 1

([
b̂, b̂†

]
= 1

)
. The mechanical resonance frequency

is fixed at Ωm, but the optical frequency ωcav in this picture is a function of the position x of
the mechanical resonator.

Figure 4.2: Schematic representation of a generic "mirror-on-a-spring" optomechanical system. It
features the optical mode â with resonance frequency ωcav confined in a Fabry-Perot resonator consisting
of two opposing highly reflective mirrors separated by Lcav. One of the mirrors is anchored to the wall
via a spring. The mechanical oscillator displacement is given by x̂ with its mechanical frequency Ωm.
Both the optical and mechanical modes are coupled to external loss channels. Here the optical loss
channel is indicated by the cavity photon decay rate κint while the mechanical loss channel is indicated
by the dampening rate Γm. Radiation pressure given by the photon momentum pγ acts on the movable
end-mirror. On the other hand, the displacement of the mirror acts back on the optical resonance
frequency giving rise to the optomechanical coupling.

Expanding the optical frequency ωcav(x) to first order, as is sufficient for most experimental
realizations of optomechanical cavities 3, one finds:

ωcav (x) ≈ ωcav + x∂ωcav /∂x+ · · · (4.2)

where G(1) = −∂ωcav/∂x
4 defines the so called linear frequency-pull parameter [13], i.e.

quantifying the frequency shift of the optical resonance frequency dωcav induced by a given
2Here, one only considers one mode each for the mechanical and optical degree of freedom, extensions to

higher orders are also viable but not needed for the theoretical context of this thesis.
3The second-order term does become interesting for MIM-experiments as quantum non-demolitions mea-

surements of the mechanical phonon occupation have been proposed [40] in systems with negligible linear
coupling.

4The minus sign assures that the frequency decreases when applying a positive (x > 0) shift of the movable
mirror position
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Chapter 4. Optomechanics: Cavity optomechanics with polymer membranes

spatial shift of the mechanical oscillator dx. For a simple "mirror-on-a-spring" cavity of length
Lcav, one finds G(1) = ωcav/Lcav. Hence, miniaturized cavities with small cavity lengths Lcav
increase the frequency shift induced on the optical mode.

In MIM systems the frequency shift of the optical mode is not caused by a moving end
mirror but by the displacement of the intra-cavity membrane. This calculation of the frequency
pull parameter for this case is detailed in section 4.1.4. Expanding the linear terms in the
Hamiltonian (Eq. (4.1)) to first-order now leads to:

Ĥ = ~(ωcav −Gx̂)â†â+ ~Ωmb̂
†b̂.

Here the position operator x̂ can be decomposed into a sum of the phononic creation and
anhiliation operators x̂ = xZPF

(
b̂+ b̂†

)
where the zero-point-fluctuation amplitude has been

introduced [22]:

xZPF =
√

~
2meffΩm

.

Here, meff is the effective mass of the mechanical mode. Finite element simulations of
the mechanical resonator can be used to extract the value of meff (see section 3.2). The full
Hamiltonian, including the interaction term (but not including laser drive and decay terms),
now reads:

Ĥ = Ĥ0 + Ĥint = ~ωcavâ
†â+ ~Ωmb̂

†b̂− ~g0â
†â
(
b̂+ b̂†

)
, (4.3)

where

g
(1)
0 = G(1)xzpf (4.4)

is the linear vacuum optomechanical coupling strength (from now on the superscript (1)
will be dropped, unless required for visual clarity) with units of frequency. It describes the
frequency shift of the cavity per zero-point displacement of the mechanical resonator; it also
quantifies the force exerted onto the end mirror per intra-cavity photon 5. It is one of the
main figures of merit for optomechanical systems and its measurement will play a major role
in this thesis.

The optomechanical coupling g0 is typically very small compared to any incoherent optical
loss processes κint. To remedy this, a large number of photons ncav must populate the cavity
as can be realized with a bright pump field. Mathematically, this corresponds to "linearizing"
the interaction term of the optomechanical Hamiltonian [41] (see Eq. (4.3)). To this end,
the cavity field â is split up into a mean field amplitude 〈â〉 = ᾱ with |ᾱ| � 1 and a small
fluctuating part δâ that describes deviations away from the mean field:

â = ᾱ+ δâ (4.5)

With this expansion, products of fluctuation operators may be dropped as:

â†â = ᾱ2 + ᾱ
(
δâ† + δâ

)
+ δâ†δâ

≈ ᾱ2 + ᾱ
(
δâ† + δâ

)
.

5More precisely, the radiation-pressure force is given by F̂ = − dĤint
dx̂

= ~Gâ†â.
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4.1. The optomechanical interaction

Inserting this expression into the interaction term of the full Hamiltonian Eq. (4.3) reads:

Ĥ
(lin)
int = −~ωcav|ā|2(b̂+ b̂†)− ~g0

√
n̄cav

(
δâ† + δâ

) (
b̂+ b̂†

)
. (4.6)

The first term in Eq. (4.6) indicates the existence of a mean radiation pressure force
F̄ = −dĤint,first

dx̂ = ~G|ā|2. For simplification, the origin position of the mechanical resonator is
shifted by ∆x̄ = F̄ /meffΩ2

m to eliminate this contribution from the interaction Hamiltonian.
In this form the original vacuum linear coupling strength g0 has been boosted to g0 ·

√
n̄cav by

the average photon number inside the cavity. This means that the effective optomechanical
coupling can be amplified by pumping the cavity with high laser intensities. Nevertheless, g0
remains the fundamental figure of merit quantifying the coupling strength for a single photon
(n̄cav = 1).
This linearization scheme can also be applied for moderate photon numbers n̄cav circulating
inside the resonator [13]. Especially for low Finesse cavities (as is the case for this thesis) with
high optical decay rates (i.e. a small average photon lifetime) 6 the mechanical resonator is
not able to resolve the contributions from each individual cavity photon.

6In this context, the photon lifetime (∝ 1
κ
) describes how long a photon stays inside the cavity before

inevitably decaying out of the cavity through loss channels (such as transmission, scattering or absorption of
the photon) denoted by κ.
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Chapter 4. Optomechanics: Cavity optomechanics with polymer membranes

4.1.3 Fields inside membrane-in-the-middle cavities

To calculate the optomechanical coupling strength g0 (from Eq. (4.4)) in a MIM-cavity,
considerations about the field inside the cavity have to be made. For this purpose, a purely
classical analysis of the electric and magnetic fields with the help of Maxwell’s Equations [42]
is sufficient.
Consider the simplified geometry of the "Air-Membrane-Air" cavity and its corresponding
field distribution, illustrated in Fig. 4.3. In this simplified picture, the cavity consists of a
non-dispersive and loss-less dielectric with refractive index n, which is placed between two
mirrors with a perfectly conducting surface, enforcing field nodes at their positions. The
geometry of the cavity and its field distribution is completely determined by the free-space
cavity length L1 defined by the left in-coupling mirror M1 at x = x1 and left membrane edge
at x = 0, the membrane thickness d defined by the left (right) membrane edge at x = 0
(x = x0) and leg height L2 defined by the right membrane edge at x = x0 and right mirror
M2 at x = x2.

Figure 4.3: Field A(x) inside "Air-Membrane-Air" cavity split into the fields AL(x) spanning across
free-space length L1, AM (x) across the membrane thickness d and AR(x) spanning across leg length
L2. The field is confined by two (assumed) perfect electrical conductors surrounded by air, mirror 1
located at x1 = −L1 and mirror 2 located at x2 = L2 + d. The dielectric membrane region is confined
to 0 ≤ x ≤ x0 = d.

As a first step, the Gaussian-beam envelope is assumed to be only slowly varying across
the cavity length and the standard plane-wave ansatz is made. For ease of notation, all
considerations for the electric and magnetic fields are expressed in terms of the vector potential
A(r, ω). In source-free-space, the vector potential A(r, ω) constitutes the fields as [42]:

E(r, ω) = −iωA(r, ω) (4.7)

H(r, ω) = 1
µ
∇×A(r, ω) (4.8)
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4.1. The optomechanical interaction

with magnetic permeability µ of the membrane medium. Suppressing the explicit fre-
quency dependence of the fields and assuming a linearly polarized field in the z-direction and
propagating along the x-direction (see Fig. 4.3), a standing-wave ansatz can be made by
splitting up the total field A(x) across three respective regions according to:

A(x) =


aL · eik0·x + bL · e−ik0·x, − L1 ≤ x < 0
aM · eik·x + bM · e−ik·x, 0 ≤ x ≤ d
aR · eik0·x + bR · e−ik0·x, d < x ≤ L2 + d

with bare angular wave number k0= ω
c , dielectric angular wave number k = n · k0 and

corresponding field amplitudes ax and bx. Since the tangential component of the electric field
E(r, ω) at both surfaces of mirror 1 and 2 modeled by a perfect conductor vanishes and the
tangential components of both the electric and magnetic fields (E(r, ω) & H(r, ω)) need to
be continuous at the interface between two dielectric media [43], boundary (and continuity)
conditions can be imposed onto the field A(x, t):

∂
∂tAL (x1, t) = 0(I) ∂

∂tAR (x2, t) = 0(II)

∂
∂tAL (0, t) = ∂

∂tAM (0, t)(III) ∂
∂tAM (x0, t) = ∂

∂tAR (x0, t)(IV)

∂
∂xAL(x, t)

∣∣∣
x=0

= ∂
∂xAM (x, t)

∣∣∣
x=0

(V) ∂
∂xAM (x, t)

∣∣∣
x=x0

= ∂
∂zAR(x, t)

∣∣∣
x=x0

(VI)

Applying these conditions to the standing wave ansatz for A(x), a resonance condition
can be formulated, relating the length parameters L1, L2 and d that permit a resonant cavity
mode. One finds that the condition that fixes the (L1, L2, d)-triplet for a cavity resonant with
probe light λ = 2π

k0
is given by Rmim(L1, L2, d) = 0 where:

Rmim(L1, L2, d) = A+(L1) · e−ink0d −A-(L2) · eink0d (4.9)

with coefficients A±(L):

A±(L) = 1∓ in · tan(k0L)
1± in · tan(k0L) .

One of the triplet parameters fixes the resonance condition, whereas the other two can
be numerically extracted. An example is shown in Fig. 4.4 for (L2, L1)-pairs with fixed
membrane thickness d = 1 µm.

Finally, the vector potential A(x) and equivalently the electric (Eq. (4.7)) and magnetic
field (Eq. (4.8)) can be calculated. The vector potential A(x) reads:

A(x) = A0×



sin(k0(x+L1))
i sin(k0L1)+1/n·cos(k0L1) , − L1 ≤ x < 0
sin(kx)+n·tan(k0L1) cos(kx)

1+in·tan(k0L1) , 0 ≤ x ≤ d
eikd sin(k0(x−(L2+d)))
−i sin(k0L2)+1/n·cos(k0L2) , d < x ≤ L2 + d

(4.10)
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Chapter 4. Optomechanics: Cavity optomechanics with polymer membranes

Figure 4.4: Resonant cavity condition (absolute value of Eq. (4.9)) plotted against free-space length L1
and leg length L2 normalized by λ0 = 780 µm, with fixed drum thickness d = 1 µm. The red resonance
lines show all points that are zero, i.e fulfill the condition and are periodic in L2 and L1 with λ0/2.

4.1.4 Calculating the optomechanical coupling strength

In this section, the results from section 4.1.3 are used to determine the (vacuum) linear
optomechanical coupling strength for the MIM system presented in this thesis. To recapitulate,
the cavity resonance frequency ωcav given by Eq. (4.2) and, including terms of order O(x2),
reads:

ωcav (x) ≈ ωcav + x
∂ωcav
∂x

+ 1
2x

2∂
2ωcav
∂x2 + · · · (4.11)

Where the linear coupling strength is given by g(1)
0 = G(1)xzpf with the linear frequency-pull

parameter G(1) = ∂ωcav
∂x and the newly introduced quadratic coupling strength g(2)

0 = 1
2G

(2)x2
zpf

with its quadratic frequency-pull parameter G(2) = ∂2ωcav
∂x2 . Since the expected zero-point

fluctuation amplitude xzpf will be extracted from finite element simulations (refer to chapter
3.2), the only quantity that remains unknown is the frequency-pull parameter G(1) (G(2)) and
will be calculated in the following.

In a MIM system the motion of the dielectric membrane causes a dispersive shift of the
cavity frequency. In contrast to the "mirror-on-a-spring" optomechanical cavity, where the
geometric length of the cavity is changed, here only the effective optical length is modified.
Thermal occupation of the phononic modes of the drum induces vibrational motion of the
membrane at its eigenfrequencies 7. First, the fundamental flexural mode is considered
(denoted by (2) in Fig. 4.5 (b)). For this specific mode, L1 and L2 are decreasing and
increasing respectively, while the drum membrane thickness d stays constant (compare Fig. 4.5
(a)). The cavity field experiences an effective change of the refractive index at the boundaries
of the dielectric membrane, hence inducing a dispersive shift of the resonance frequency. Two
methods to calculate the frequency-pull factor G(1) are presented: the first, straightforward
method is considering the shift of the cavity geometry due to the motion of the membrane. The

7Even if the mechanical membrane is cooled to its motional ground-state, the zero-point fluctuations of the
harmonic oscillator would cause motion of the membrane and therefore induce frequency noise in the optical
cavity

30



4.1. The optomechanical interaction

(a) (b)

Figure 4.5: (a) Schematic displaying the typical geometry of the MIM-cavity. (b) Two of the many
possible vibrational modes are displayed: (1) side view of the simplified drum geometry without
vibrations. (2) the fundamental flexural mode, a periodic up-and-down motion of the drum membrane
(3) a "breathing" mode, the membrane performs a periodic contraction and expansion of its thickness.

second method considers shifting material boundaries using perturbation theory for Maxwell’s
equations.

Method 1: The geometric approach The change of the cavity geometry induced by the
vibrational motion of the membrane leads to a shift of the optical resonance frequency. To
include this into the existing model that determines the allowed (L1, L2, d)-triplet for a given
input wavelength λ0, the following change of variables is performed:

L1 → L1 + ∆L
L2 → L2 −∆L
k0 → k0 + ∆k

Inserting these back into the resonance condition (Eq. 4.9) allows to numerically extract the
shift ∆k of the angular wavenumber and thereby the shift on the resonance frequency ∆ωcav
in air. Calculating the ratio between frequency- and displacement-shift allows to determine
the frequency-pull parameter G(1). It should be noted that these calculations consider a
very simplified model to estimate frequency-pull parameter G(1). However, the following
requirements ensure that this model determines the frequency-pull parameter G(1) in good
approximation:

• The Rayleigh length zR (here zR ≈ 50 µm) has to be in the same order of magnitude
as the cavity length Lcav (here Lcav ≈ 30 µm) to justify neglecting the Gaussian-beam
properties of the laser light.

• The mode width ω0 (here ω0 ≈ 3.5 µm) of the optical mode has to be sufficiently smaller
than the effective membrane radius rmem (here rmem ≈ 20 µm) to ensure that the optical
mode only overlaps with an almost constant displacement of the drum membrane at the
center.
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• The mirrors are assumed to be non-dispersive, such that the total cavity length is only
given by the geometry of the cavity.

An exemplary graph displaying G(1) in dependence on the drum geometry normalized
by the wavelength λ0 is shown in Fig. 4.6 (a). It features a periodic pattern of well-defined
minima and maxima with a periodicity of half of the material wavelength. This "coupling
map" now precisely shows which (L2, d)-pair 8 results in maximum optomechanical coupling
and is used as a guideline for the drum fabrication process. The asymmetry between the
minimum and maximum value arises from the fact that the cavity geometry is chosen such
that the free-space cavity length L1 is roughly double in size compared to the leg height L2,
as in the actual experiment (for more details, see Eq. (4.16) in the following paragraph).

(a) (b)

Figure 4.6: (a) Coupling map for G(1) vs. the normalized drum membrane thickness d and leg height
L2. The map features a repeating pattern with a periodicity of half of the material wavelength (b)
coupling map for G(2) vs. the normalized drum membrane thickness d and leg height L2. It is derived
from (a) by a numeric derivative and also features the same periodicity as in (a).

Furthermore, the quadratic frequency-pull G(2) that arises as the numerical derivative of
the first order frequency-pull is displayed in Fig. 4.6 (b). A unique feature that differentiates
MIM systems from simple mirror-on-a-spring-like cavities is that for zero linear optomechanical
coupling strength the quadratic coupling strength can be maximized (compare Fig. 4.6). With
this, the effective optomechanical coupling between the optical and mechanical modes is solely
given by the quadratic interaction. The interaction Hamiltonian for such a system then reads
[13]:

Ĥint = ~g(2)
0

(
b̂+ b̂†

)2
â†â

By invoking the Rotating-Wave-Approximation, dropping any fast oscillating terms [44], the
interaction Hamiltonian Ĥint is then directly proportional to the phonon number n̂phonon = b̂†b̂.
The quadratic optomechanical coupling could then, in principle, lead to Quantum-Non-
Demolition (QND) measurements of the phonon number and generation of mechanical cat-
states of the mechanical resonator [40], [13].

8The missing parameter of the triplet L1 is always chosen in a way such that the overall cavity size
Lcav = L1 + L2 + d stays roughly constant, up to a slight deviation to always fulfill resonance.
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Method 2: The pertubative approach To calculate the frequency shift per displacement
G(1) in a perturbative context (i.e how a spatial shift of the dielectric membrane induces
higher-order corrections to the resonance frequency), the framework of Maxwell’s Equations
written as an eigenproblem is utilized [45]. To this end, the eigenequation of the electric cavity
field

∣∣∣E(n)
〉
with eigenfrequency ωcav is given by the well-known wave equation in a source-free

medium with dielectric permittivity ε(x):

∇2|E〉 =
(
ωcav
c

)2
ε(x) |E〉 (4.12)

For convenience, the basis-independent representation of the electric field as "Bra"- and
"Ket"-vectors is utilized, with the typical inner product

〈
E | E′

〉
≡
∫

E∗ · E′dV familiar
from standard quantum mechanics literature [22]. Because of the vibrational motion of the
drum membrane, the effective dielectric permittivity experiences a small change ∆ε̂ due to a
perturbative shift in the position of the drum membrane ∆x. With this, the new eigensolutions
of the electric field and its eigenfrequencies are expanded in powers n of ∆x and, to first order,
lead to:

|E〉 =
∞∑
n=0

∣∣∣E(n)
〉

=
∣∣∣E(0)

〉
+
∣∣∣E(1)

〉
+O(∆x2) (4.13)

ωcav =
∞∑
n=0

ω(n)
cav = ω(0)

cav + ω(1)
cav +O(∆x2) (4.14)

Inserting Eq. (4.13) and Eq. (4.14) back into Eq. (4.12) and neglecting any terms of
quadratic-order leads to the first-order correction to the resonator frequency ω(1)

cav

ω(1)
cav = −ω

(0)
cav
2

〈
E(0)|∆ε|E(0)

〉
〈
E(0)|ε|E(0)

〉
or equivalently in its differential form:

G(1) = dωcav
dx

= −ω
(0)
cav
2

〈
E(0)

∣∣∣ dεdx ∣∣∣E(0)
〉

〈
E(0)|ε|E(0)

〉 (4.15)

The following explicit parameterization for the dielectric function ε(x) is then chosen to be:

ε(x) = ε2 + (ε1 − ε2)
(
Θ(x− x0)−Θ(x− (x0 + d))

)
which describes the material distribution (ε1 for the dielectric membrane, ε2 for air) of the two
sides of the drum membrane positioned at x0 (compare Fig. 4.7). Noting that the derivative
of the step-function Θ(x) is the well known Dirac-Delta function δ(x), the frequency-pull G(1)

then reads:
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Figure 4.7: Dielectric function ε(x) describing the dielectric permittivity distribution of the drum
geometry. The drum membrane (ε1) with thickness d is shifted by a small ∆x in positive (x>0)
direction towards the surrounding air (ε2).

G(1) = dωcav
dx

= ω
(0)
cav
2

∫
SR

dS

(
1− d(x0 + d)

dx

)
∆ε
∣∣∣E‖(0)

∣∣∣2 − ∫
SL

dS

(
1− dx0

dx

)
∆ε
∣∣∣E‖(0)

∣∣∣2∫
V
dV ε(x)

∣∣∣∣E(0)
‖

∣∣∣∣2
(4.16)

where SR (SL) is the surface area on the right (left) side of the drum membrane (that
overlaps with the optical mode) with the total resonator volume V and ∆ε = ε1 − ε2.
Furthermore, only the parallel component (w.r.t the membrane interface) of the electric field
has been considered, while the orthogonal component is neglected for the plane-wave ansatz
9. Since the perturbation of the system is assumed to be simply given by a shift of the
membrane (with no further deformations of the geometry), the additional derivative terms
such as d(x0+d)

dx can also be neglected. With this, the frequency-pull parameter G(1) can be
completely determined by making use of the results from section 4.1.3, more specifically the
explicit field distribution of the MIM cavity field from Eq. (4.10).
Even though method 2 delivers virtually identical results to method 1, further insight about
the coupling can be gained from the analytic form of Eq. (4.16): For a cavity field with
equal field distribution on both sides of the membrane (symmetric case), the numerator will
just cancel out and the coupling will always be zero. On the other hand, for the situation
where the field on one side of the membrane is maximal whereas on the other side minimal
(anti-symmetric case), the frequency-pull factor G(1) and hence the coupling strength g0 is
maximized. An intuitive explanation for this can be gained by thinking about the radiation
pressure of the cavity field onto the membrane: for a totally symmetric field distribution
on both sides of the membrane, the resulting radiation pressure would just cancel out, not
affecting the membrane at all. Vice versa, the totally anti-symmetric case would induce the
maximum radiation pressure onto the membrane, resulting in maximum coupling between the
optical cavity and mechanical resonator mode. Explicit plots of the cavity field distribution
for specific geometries compared to the coupling map are depicted in Fig. 4.8.

9If there would be a normal component of the E-field that can not be neglected, the integrals in Eq. (4.15)
would not be manifestly defined (due to the discontinuity of the normal component) and the dielectric function
would have to be "smoothed out" accordingly [45]
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(a) (b)

Figure 4.8: (a) Cutout of the linear coupling map from Fig. 4.6 (a). Four points of interest are
emphasized. (b) Cavity intensity distribution of the four highlighted points from (a). The grayed-out
area represents the drum membrane. Each point represents a unique scenario of the field distribution
that leads to a given coupling strength: maximum (positive) coupling strength (blue), maximum
(negative) coupling strength (red) and zero coupling strength (yellow and green). Case (3) represents
the special situation where the drum membrane thickness is exactly equal to a multiple of half the
material wavelength and is therefore always zero for any L2.

4.2 Frequency discrimination and stabilization of a MIM cav-
ity

The overarching goal of this thesis is to measure the coupling strength g0 of the optomechanical
interaction in a MIM-cavity with 3D-laser written polymer membranes. Since it is difficult
to directly infer information about the mechanical drum membrane, the only other degree of
freedom left is to use the optical field to somehow make this interaction visible. By making use
of the standard Pound–Drever–Hall (PDH) frequency stabilization scheme [46] that utilizes
a (PHD) error signal to "lock" the system on the cavity resonance frequency, this is made
possible.
Since the mechanical resonator is connected to a thermal bath due to the finite temperature
of the experiment environment (i.e the lab) there will always be some thermal occupation
of the mechanical vibration modes. The drum membrane motion will therefore introduce a
very small shift on the resonance frequency ωcav of the optical mode, inducing optomechanical
coupling. This will make itself noticeable in the optical mode (i.e the reflection signal that
is measured) as a (mechanical) phase-noise contribution that will be overlapped with the
reflection signal. Since this noise is exceedingly small compared to other external noise sources
of the experiment, a very sensitive measurement scheme has to be utilized to separate out this
specific contribution of interest. For this matter, an overview of the employed measurement
system is given, followed by a brief overview of the theoretical considerations and practical
application of the locking scheme in the context of measuring the mechanical frequency noise.
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4.2.1 Experimental setup for cavity frequency locking

The setup used for the PDH stabilization scheme is depicted in Fig. 4.9 (a). It consists of
three main components: the MIM-cavity (colored in green), the laser & optics (colored in
red, essentially an updated version of the setup introduced in section 2.4) and finally the
electronics needed to create the error signal (colored in blue).

(a)

(b)

(c)

Figure 4.9: (a) The complete experimental setup used for measuring the frequency noise induced by the
drum with the PDH technique. It is divided into three main segments: the laser & optics (colored in
red) featuring an Electro-Optical-Modulator (EOM), Polarizing-Beam-Splitter (PBS) and photodiode
that measures the reflected power of the cavity (PDrefl) as a signal "r" (displayed on an oscilloscope);
the MIM cavity (colored in green) split up into the fiber & ferrule region (purple dashed box) and
cavity region (dark blue dashed box); the electronics (colored in blue) featuring a mixer, phase-shifter
(PS) and function generator (WGEN) for the EOM. The error signal "e" (displayed on an oscilloscope)
passes a Low-Pass-Filter (LPF) on its way through the Proportional-Integral (PI) feedback controller
and is also sent to the Electrical-Spectrum-Analyzer (ESA). An additional LPF is installed after the
controller output to clean up the driving signal sent to the shear-piezo. (b) Microscope image of the
fiber & ferrule region (purple dashed box): the fiber mirror is threaded through a commercial glass
ferrule and is glued to a shear-piezo using UV-epoxy. Electrical contacts are glued onto the shear piezo
to perform cavity resonance scans. These components are then glued onto a custom-made aluminum
holder for easy integration into the setup. (c) Microscope image of the cavity region (dark blue dashed
box): The aluminum holder that hosts the fiber & ferrule is opposite to a 0.5 inch flat mirror that hosts
the polymer drums and is connected to a motorized y-z-translation stage to shift the drum position
relative to the fiber mirror.

Starting with the (red) optics branch, a wavelength-tunable laser 10 set to 780 nm in
wavelength is guided through an Electro-Optical-Modulator (EOM), essentially a Mach-
Zehnder type interferometer used to modulate the phase (or amplitude) of the input beam.
The laser beam passes a Polarizing-Beam-Splitter (PBS) with appropriately tuned wave plates
before and after the PBS to ensure that any light traveling in the opposite direction (w.r.t
the original laser beam path) experiences a 90° shift in polarization and will be caught in the

10Lion Series: TEC-500-0770-040
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4.2. Frequency discrimination and stabilization of a MIM cavity

beam path towards the photodiode. After passing the PBS, the laser light is then coupled
through a free-space fiber coupler into the opposite end facet of the single-mode fiber-mirror11
used to build the cavity. As the laser light is coupled into the fiber-mirror, it reaches the cavity
branch (colored in green) that is defined by the in-coupling fiber-mirror and the opposing
flat mirror on which drum membrane structures have been printed (compare Fig. 4.9 (c)),
forming the MIM-system. The flat mirror is installed onto a motorized y-z-translation stage
to shift the polymer drum position relative to the fiber mirror. As depicted in Fig. 4.9 (b),
the fiber-mirror end of the single-mode fiber is threaded through a glass ferrule 12 to hold the
fiber in place. Some portion of the fiber is then glued to a commercial shear-piezo ceramic 13

using a viscous UV-epoxy 14.
By applying voltage to the shear-piezo, the position of the fiber along the x-direction, and
by extension the overall cavity size, is shifted. Applying an (amplified 15) driving triangular
voltage signal 16 to the piezo allows to scan the cavity resonances (see Fig. 4.9 (a), denoted by
"r").
Finally, additional electronics (colored in blue) are used to create the wanted cavity error signal
with a simple dispersive frequency response (denoted by "e" in Fig. 4.9 (a)). After generating
the error signal, a Proportional-Integral (PI) feedback loop is used to lock the cavity at the
desired frequency. After successfully locking the cavity, the resulting noise signal is then sent
to an Electrical-Spectrum-Analyzer (ESA), which essentially decomposes the signal into its
frequency components that are then used to measure the optomechanical coupling strength,
as will be explained in the following sections.

4.2.2 The Pound-Drever-Hall locking scheme

To explain how the error signal used for locking the cavity is generated, a short introduction to
the Pound-Drever-Hall (PDH) locking scheme is given. The practical implementation of this
technique for this setup follows in the next paragraph. For further details, standard literature
(e.g [47] or [46]) can be consulted.

Theory of the Pound-Drever-Hall scheme Following the laser path from its origin, the
laser light first passes through an EOM which modulates the phase of the input laser beam
according to the modulation frequency Ωmod from a function generator. The input electric
field of the laser is thus modified to:

Ein = E0 e
i(ωt+β sin(Ωmodt)) (4.17)

with angular frequency ω, modulation frequency Ωmod and modulation depth β. Expanding
Eq. (4.17) by using the Jacobi-Anger expansion (or small angle expansion) to first order 17

leads to:
11The single-mode fiber of the fiber mirror is cleaved and fused to a commercial single-mode fiber-patch cable

for ease of usage as described in section 2.3
12VitroCom: https://www.vitrocom.com/
13PI ceramic GmbH: https://www.piceramic.com/
14EPO-TEK OG116-31
15FLC electronics A800 Voltage Amplifier (100×)
16Typical pre-amplified scan amplitudes range from 0.5− 3 V peak-to-peak with signal frequencies of around

50− 100 Hz.
17eiz sin θ =

∑1
n=−1 Jn(z)einθ
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Ein ≈ E0
[
J0(β)eiωt + J1(β)ei(ω+Ωmod)t − J1(β)ei(ω−Ωmod)t

]
where J0, J1 are the zeroth and first-order Bessel functions of the first kind, respectively.

The laser beam now consists of three different beams that are incident on the cavity: the
(main) carrier beam with angular frequency ω and two sidebands with modulated frequencies
ω ± Ωmod. The resulting reflection signal from the cavity output would now also feature
three distinct resonances with the same frequency separation as the incident field. Since
the optical linewidths (∆νFWHM > 1 GHz) of our cavities are much larger than the used
modulation frequency 18 (Ωmod = 250 MHz), these sideband features can not be resolved here.
Nevertheless, the effect of the sidebands that lead to the PDH error signal still remains. The
reflected electric field of the cavity can be inferred by multiplying each of the three components
by their respective reflection coefficient R(ω) = Er(ω)/Ein (compare Eq. (2.2))19, which leads
to:

Er = E0
[
R(ω) J0(β)eiωt +R(ω + Ωmod) J1(β)ei(ω+Ωmod)t −R(ω − Ωmod) J1(β)ei(ω−Ωmod)t

]
The resulting intensity picked up by photodiode (see Fig. 4.9 (a)) is then just given by

Pr = |Er|2:

Figure 4.10: Pound-Drever-Hall signal of a symmetric and losses Fabry-Perot cavity (Ωmod < ∆νFWHM)
for three different reflectivities r. The larger the reflectivity r (or equivalently the Finesse of the cavity),
the steeper the error signal becomes.

18This approach is just as valid if the modulation frequency Ωmod is above the cavity linewidth ∆νFWHM,
here the experiment was just limited by the equipment.

19For sake of simplicity, the modification of the reflective coefficient for fiber cavities (from Eq. (2.18)) is
neglected. This modification would just introduce a slight asymmetry in the resulting error signal and does not
affect the overall behavior.
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4.2. Frequency discrimination and stabilization of a MIM cavity

Pr = 2
√
PcPs

{
Re

[
R(ω,Ωmod)

]
cos(Ωmodt) + Im

[
R(ω,Ωmod)

]
sin(Ωmodt)

}
+ (stationary terms) + (2 Ωmod terms).

(4.18)

with the complex-valued coefficient

R(ω,Ωmod) = R(ω)R∗(ω + Ωmod)−R∗(ω)R(ω − Ωmod). (4.19)

where Pc = J2
0 (β) |E0|2 and Ps = J2

1 (β) |E0|2 are the power in the carrier and sidebands,
respectively. For slow modulation frequencies (Ωmod < ∆νFWHM) as is the case for this setup,
Eq. (4.19) can be approximated to:

R(ω,Ωmod) ≈ 2 Re
{
R(ω) d

dω
R∗(ω)

}
Ωmod = d|R|2

dω
Ωmod,

a purely real-valued quantity. With this, Eq. (4.18) is now just proportional to cos(Ωmodt).
Combining this signal with the modulation signal sin(Ωmodt) of the EOM into the input ports
of the mixer 20 (see Fig. 4.9 (a)) and carefully adjusting the phase shifter, the term in Eq.
(4.18) that varies with cos(Ωmodt) will partly be transformed into a DC-signal, while the rest
of the equation will be left with some time dependency. Inserting a low-pass filter after the
mixer then filters out all of the time-dependent terms, which leaves the reflected power as:

Pr = 2
√
PcPs

d|R|2

dω
Ωmod.

This is precisely the wanted error signal that is shown in Fig. 4.9, which can now be used
to lock the MIM-cavity. Fig. 4.10 shows an exemplary plot of this error signal for a symmetric
and lossless cavity.

Applying the Pound-Drever-Hall scheme to the experiment The previous paragraph
explained how the PDH signal is generated. To now actually perform a lock on the cavity, a
feedback loop control scheme has to be implemented that uses the PDH signal as a frequency
discrimination reference. A simplified sketch of the control loop that is utilized in the
experiment is depicted in Fig. 4.11 (a).
Three different signals constituting the locking scheme can be distinguished: the desired
setpoint r(t), the process value y(t) and the control function u(t). Here, the setpoint r(t) = r0
is a preset (constant) voltage on the linear slope of the PDH signal and y(t) is given by
the voltage on the linear slope of PDH signal at the setpoint frequency (corresponding to
ω/∆νFSR = 0 in Fig. 4.11 (b)). With this, any deviations of the signal (due to e.g length or
frequency instabilities of the cavity) would change the signal value (i.e voltage) of the PDH
signal at the setpoint frequency, effectively creating a time-dependent error e(t) = y(t)−r0 (see
Fig. 4.11 (b)). The control function u(t) then takes this error, and (after modifying it with the
Proportional (P) and Integral (I) element) sends it back to the cavity-length control unit (i.e
the shear-piezo) to counteract this deviation from the setpoint r0. Since the phase sensitivity
of the cavity resonance is maximal at the resonance frequency (i.e the minimum point on
the reflection signal), it is preferable to lock the cavity at this point to be most sensitive to

20A mixer outputs the product of two electrical signal inputs.
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the phase noise induced by the polymer drum motion. However, the cavity reflection signal
itself can not be utilized for this purpose as it is symmetric around resonance. It is therefore
impossible to discriminate if the cavity length (or frequency) must be increased or decreased to
compensate a given cavity length (or frequency) drift from the reflection signal alone. Instead,
the (anti-symmetric) linear part of the PDH signal needs to be utilized.
Mathematically, the control function u(t) is defined as:

u(t) = Kpe(t) +Ki

∫ t

0
e(τ)dτ

with error signal e(t) and the gain parameters Kp and Ki that are adjusted for the specific
lock required. The proportional response takes account of any changes of the error in the
moment, while the integral element compensates for any past trends by integrating the error
over time.

In principle, this feedback loop would then go on forever and allow the cavity to con-
tinuously operate at this one fixed frequency given by the setpoint r0. In reality, however,
the efficiency of the feedback loop is limited by mainly two factors: The overall magnitude
and frequency of the instabilities present in the cavity. If the magnitude of the noise onto
the cavity shifts the linear part of the PDH signal beyond the setpoint frequency, locking
the cavity becomes impossible. Furthermore, the length control unit (i.e the shear-piezo)
and the P-I controller itself have an upper-frequency limit at which they can effectively
compensate instabilities. It is given by the locking-bandwidth νLB: The steeper the slope of
the linear response of the PDH signal, the larger the resulting error-signal response for a given
perturbation of the PDH signal, increasing the sensitivity and compensation speed of the lock 21.

Any noise with frequency beyond this limit cannot be compensated. If these contributions
are then of large enough magnitude, locking the cavity again becomes impossible. To that end,
the following measures are taken to further stabilize the cavity system and make the locking
possible:

• Sorbothane isolation chunks 22 are inserted in-between the aluminum holder that hosts
the fiber-mirror and the kinetic mount that hosts the flat mirror to dampen out any
low-frequency axial motion between the two sides of the cavity.

• Commercial pyramid foam is used to acoustically isolate the cavity region and also
protect against air currents hitting the fiber mirror.

• The weight load on the piezo-electric has also been reduced as far as possible. Before, a
commercial piezo-translation stage 23 was used for locking setup. Due to the additional
bulk of the translation stage, the system was too slow to compensate high-frequency
noises and locking was impossible. After switching to a more miniaturized system
(compare Fig. (4.9) (b)), the locking- bandwidth was drastically increased and locking
the cavity became possible.

21The locking-bandwidth νLB can be increased by e.g increasing the Finesse of the cavity, increasing the
coupling depth of the cavity or in general applying some gain to the reflection signal beforehand.

22Thorlabs Inc.: https://www.thorlabs.com/
23Thorlabs Inc. NFL5DP20/M
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(a) (b)

Figure 4.11: (a) Block diagram of the P-I controller connected to the cavity. The controller output
function u(t) is constantly sent back to the shear-piezo to compensate a frequency shift quantified by
the error function e(t)=y(t)− r0 by adjusting the cavity length. The resulting signal of the cavity is
extracted by an ESA. (b) The PDH signal used for the cavity locking with the PI controller. A shift
of the PDH signal due to some noise on the cavity resonance induces a frequency shift of the signal
(dashed line). The resulting error function e(t) is used to re-stabilize the cavity resonance back to the
original reference position.

With this, the cavity can now be successfully locked. The resulting signal y(t) is continuously
sent back into the P-I-controller but also forwarded to the ESA, which decomposes the signal
into its individual frequency components and displays the magnitude of the noise contributions
against its frequency (more formally called Power-Spectral-Density (PSD)). This signal now
contains all the noise contributions on the cavity resonance that could not be compensated by
the lock, meaning noise frequencies exceeding the locking bandwidth νLB. Since the simulated
eigenfrequency (see chapter 3.2) of the fundamental drum mode (> 300 kHz) is well above the
maximum locking bandwidth of the P-I controller (∼ 100 kHz), the mechanical resonance can
now be very effectively filtered out and examined.

4.3 Measuring the linear optomechanical coupling strength

The extracted PSD obtained after locking the cavity now contains the contributions of the
mechanical frequency noise of the drum onto the cavity signal. Here, the noise on the drum
position is generated by exchange with the thermal bath of the environment: a (random)
thermal force Ftherm (from the environment) pushing against the harmonic oscillator. To
extract the optomechanical coupling strength g0, a model that describes the PSD frequency
noise spectrum measured on the ESA is needed. To that end, a brief sketch of the derivation
for the wanted PSD is introduced. Using these results, the optomechanical coupling strength
is extracted from the drum noise.
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4.3.1 Thermal response of a harmonic oscillator

To start, it is quite useful to introduce the well-known Wiener-Khinchin Theorem [48]:

SXX(ω) =
∫ +∞

−∞
dτ e−iωτ

〈
X(0)X(τ)

〉
(4.20)

which connects the (double-sided) PSD SXX(ω) with the autocorrelation function
〈
X(0)X(t)

〉
as a Fourier-transform. Here, X(t) can be understood as a generic signal or measurand (like
the position of a harmonic oscillator). Said autocorrelation function is formally defined as:

〈
X(t1)X(t2)

〉 ∆t=t2−t1= lim
T→∞

1
T

∫ T/2

−T/2
X(t)∗X(t+ ∆t)dt

which, as the name suggests, quantifies the (self) correlation of a (stationary [49]) quantity or
signal and only depends on the time difference ∆t. To now find the specific PSD corresponding
to the motion (x-position) of the harmonic oscillator (drum), the frequency-space solution
of the damped forced harmonic (meffẍ+meffΓmẋ+meffΩ2

mx = Fext) with the effective mass
meff and damping rate Γm can be employed and reads:

x(ω) = χm(ω) · Fext(ω) (4.21)
with the susceptibility χm(ω):

χm(ω) =
[
meff

(
Ω2
m − ω2

)
− imeffΓmω

]−1

connecting the external force Fext(ω) to the coordinate response x(ω) in dependence on
the mechanical frequency ω. To now determine Sxx(ω), one could either directly plug in the
expressions for x(t) given by the dampened forced harmonic oscillator into Eq. (4.20), or as a
more intuitive argument, use Eq. (4.21) to directly connect the PSD of the x-position of the
harmonic oscillator with the thermal force Ftherm. Here, the latter approach will be used. In
analogue to Eq. (4.21) and assuming that the thermal force Ftherm is stationary [49], the PSD
for the displacement fluctuations of the harmonic oscillator can be rewritten as (for a more
in-depth justification, refer to Appendix A):

Sxx(ω) =
∣∣χ(w)

∣∣2 SFF (ω) =
∣∣χ(w)

∣∣2 ∫ +∞

−∞
dτ e−iωτ

〈
Ftherm(0)Ftherm(τ)

〉
. (4.22)

The autocorrelation function
〈
Ftherm(t1)Ftherm(t2)

〉
of the white thermal force Ftherm is

given by (refer to Appendix B for details):
〈
Ftherm(0)Ftherm(t)

〉
= 2ΓmkBT · δ(t). (4.23)

with the Dirac-Delta function δ(t), Boltzmann-constant kB and environment temperature
T (room temperature T ≈ 20 °C). Plugging Eq. (4.23) back into Eq. (4.22), ones finds:

Sxx(ω) =
∣∣χ(w)

∣∣2 ∫ +∞

−∞
dτ e−iωτ

〈
Ftherm(0)Ftherm(τ)

〉
=
∣∣χ(w)

∣∣2 ∫ +∞

−∞
dτ e−iωτ2 ΓmkBT · δ(τ)

= 1
meff

2ΓmkBT(
ω2 − Ω2

m
)2 + Γ2

mω
2
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Since the cavity (and the ESA) is not directly sensitive to the noise on the position of the
drum membrane, but rather the consequent noise on the resonance frequency, the PSD has to
be rewritten one final time (using the frequency-pull parameter G(1)), where the single-sided
24 frequency-noise PSD Sνν(f) reads [36]:

Sνν(f) = 2 · Sωcavωcav(ω)
4π2 = 2 ·G(1)2 · Sxx(ω)

4π2 = 2g2
0

4π2 ·
2Ωm

~
· 2ΓmkBT(
ω2 − Ω2

m
)2 + Γ2

mω
2
. (4.24)

with the noise frequency f = ω/2π [50]. Eq. (4.24) now finally describes the signal that
will be measured by the ESA (after performing frequency calibration on the ESA spectrum).
By now locking the MIM cavity on resonance, extracting the PSD with the help of the ESA
and using Eq. (4.24), it is now possible to extract the optomechanical coupling strength of
the cavity-drum interaction.

4.3.2 Extracted frequency noise spectra of MIM cavities

To now measure the optomechanical coupling strength between the optical cavity and the
mechanical drum mode, the MIM system is set up as follows: a flat mirror hosting a drum
array consisting of approximately 30 drums with different membrane thickness d and leg height
L2 (see Tab. 4.1) is positioned opposite to the fiber-mirror (compare Fig. 4.9 (c)) to build a
cavity of roughly 30 µm in size. Beforehand, the flat mirror orientation is adjusted to yield
the largest coupling depth. With this, the flat mirror is facing the fiber-mirror such that the
intra-cavity mode is only overlapping with the inner membrane of one of the drums at a time.
By now locking the cavity as elaborated in section 4.2.2, the spectrum of the ESA is extracted
and examined for resonances that could correspond to the mechanical drum motion.
Since the finite element simulations (section 3.2) predict drum eigenfrequencies in the hundreds
of kilohertz, the low-frequency region of the complete scan range of 150 MHz of the ESA is
inspected. To make sure that a promising resonance in the ESA spectrum truly corresponds
to the noise-induced on the cavity by the drum motion, the same measurement is repeated
without a drum membrane between the two mirrors. This rules out that the resonance in
question originates from an external noise that doesn’t correspond to the drum motion.
An exemplary measurement of the PSD of the frequency noise induced by the thermal motion
of the drum membrane is depicted in Fig. 4.12 and displays a resonance that clearly shows
the coupling between the cavity mode and the (fundamental) mechanical mode of the laser
written polymer drum. Further mechanical resonances corresponding to higher-order drum
modes with higher eigenfrequencies have not been found yet and may become visible when
the setup is inserted into vacuum (see 4.4).
Since the ESA does not strictly measure the PSD, but rather the spectral power PESA in dBm,
the measurements have to be calibrated to obtain the wanted form of the PSD corresponding
to Eq. (4.24). To that end, PESA is converted into frequency (squared) and finally normalized
by the resolution bandwidth ∆νRBW of the ESA which is chosen to be 9.1 kHz. The conversion
from power to frequency (squared) is done by measuring the slope of the linear part of the
PDH signal 25 in units of Hz/V.

24The ESA is not sensitive to the negative frequencies of a double-sided noise spectrum, and the single-sided
PSD is just given by twice the double-sided one.

25In the experiment, the PDH signal is displayed as voltage V vs. time t on the oscilloscope. To convert the
time axis into frequency, the FSR of the cavity is used for calibration. Since P ∼ V 2, the slope of the linear
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Qm g0/2π Ωm Γm/2π κ/2π L2 d

106± 1 14± 2 kHz 1.6± 0.1 MHz 101± 2 kHz 1− 3 GHz 8.3 µm− 8.7 µm 1.2 µm− 1.5 µm

Table 4.1: "Best-in-class" parameters out of roughly 30 measured drums with differing geometries. The
resonance frequencies Ωm out of the roughly 30 drums were all very close to 1.6 MHz. The rather large
error on the coupling strength g0 is due to the low Finesse of the MIM-system for this specific drum
geometry.

Figure 4.12: The power spectral density Sνν displayed against the mechanical frequency. The data
points (blue) are fitted using Eq. (4.24) (red). A reference measurement without the polymer drum
is shown in green. The coupling strength can be extracted from the fit and is proportional to the
amplitude of the resonance.

With this, the ESA spectrum now properly describes the physics given by Eq. (4.24) with
the same units of Hz2/Hz. From fitting Eq. (4.24) to the measured spectrum from the ESA,
the relevant quantities describing the mechanical drum properties can be extracted. This is
done for all of the 30 drums with differing geometries that correspond to different coupling
strength scenarios given by the coupling map from Fig. 4.6. The "best-in-class" parameters of
the 30 different drum realizations are displayed in Tab. 4.1, including the mechanical quality
factor Qm, the optomechanical coupling strength g0

26, the mechanical resonance frequency Ωm,
the mechanical dampening rate Γm and the corresponding range for typical cavity loss rates
κ/2π. Tab. 4.1 also shows that the actually measured parameters differ from the simulated
ones from section 3.2: The results for Qm and Γm deviate from the simulations since the
measurements are not performed in vacuum (as is assumed in the simulations) but rather in
the regular lab environment. Improving these quantities by moving the setup into vacuum is
one of the next goals for this experiment, as explained in the following section 4.4.

The deviation of the expected resonance frequency compared to the simulations is most
likely due to a lack of knowledge about the actual mechanical material properties of the
photoresist used for the DLW and the general uncertainty on the true drum geometry sizes

part of the PDH signal needs to be squared to convert the power spectrum.
26Large coupling strengths also typically entail large scattering losses in the MIM system as the field intensity

has to be maximized at the polymer surface. This reduces the slope of the PDH signal and the corresponding
sensitivity of the measurement and results in a rather large error for large coupling strengths.
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(compare section 3.2). Since the values for L2 and d shown in Tab. 4.1 are just the desired
input into the NanoScribe system, it is unclear how close these inputs are to the real quantities
after the printing process (with potential deviations of up to a 1 µm). For that reason, a
calibration of the drum geometry will also be performed in the near future with the help of an
interference microscope [25]. If the size calibration is successful and the actual dimensions
of the drum geometry are well understood, these measurements will help to draw further
conclusions on the still unknown mechanical properties of the polymer drums.

(a) (b)

Figure 4.13: (a) Coupling map displaying the linear frequency-pull parameter G(1) against the drum
geometry dimensions d and L2. The zero coupling points are highlighted in dark red. Two diagonal
intersections corresponding to the wavelength scan for two polymer drums with different dimensions
are displayed: Drum 1 (D1) in blue and Drum 2 (D2) in red. (b) Absolute magnitude of the coupling
strength g0/2π against the wavelength λ0 for the two drums. The corresponding theory curves from
(a) are overlapped with the measured data points. The simulated maximum coupling is calculated to
be at 35 kHz. A measurement of the coupling strength of drum 1 two months prior is highlighted by a
black outline.

To now find the largest coupling strength possible for this system, many different drum
geometries would need to be measured out to find the one corresponding to a coupling strength
maxima (or minima) according to the coupling map in Fig. 4.6. Alternatively, just a single
drum can be used by changing the laser wavelength with the help of the tunable wavelength
laser. This is essentially equivalent to changing the drum geometry. This is also the reason
why the leg height of the drum geometry was chosen to be L2 > 8 µm, as a scan in the
wavelength of ∆λ0 = 20− 30 nm is equivalent to an effective change of the leg height by λ/2
(the periodicity of the coupling map). The change of wavelength corresponds to a diagonal
cut across the coupling map, where different starting geometries correspond to a horizontal
or vertical shift of the lines across the map. Two lines corresponding to the two drums that
were measured using this technique are displayed in Fig. 4.13 (a). The resulting absolute
magnitude of the coupling strength g0 is shown in Fig. 4.13 (b), where the theory curves from
Fig. 4.13 (a) that are overlapped with the measurements correspond to the "by-eye" best
fitting diagonal cut across the coupling map and are not directly fitted to the data itself.
This is due to the number of uncertainties concerning the theory and explains the slight
deviation of the theory from the data points. As mentioned previously, the true values of
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the drum geometry are not yet fully known and the theory also only considered the ideal
case of non-dispersive and perfectly conducting mirrors which — in reality — is not the case.
Nevertheless, the theory seems to explain the measurements rather well and optomechanical
coupling strengths well above 25 kHz can be reached, close to the maximum value of 35 kHz
calculated from the simulated effective mass meff (compare section 3.2) and the maximum
frequency-pull parameter G(1) from the coupling map (compare Fig. 4.6).
Fig. 4.13 (b) also shows that the polymer drums seem to be changing size over time: a similar
measurement of drum 1 was performed two months prior to the current results and shows
that the coupling strength has changed dramatically. This is only explained by a change in
the size of the drum (of a few nanometers) and is believed to arise due to a shrinkage of the
drum geometry as the photoresist is further drying out over time. Since this might prove
problematic in terms of the consistency of the measurements, the extent of this change has to
be further analyzed in the future.
To now add context to these measurements, a table comparing this novel MIM cavity to other
more established platforms for MIM resonators is listed in Tab. 4.2. It features a collection of
MIM systems that all make use of (mostly) commercial silicon nitride (SiN) membranes with
high quality mechanical (Qm > 106) and optical properties [17] suitable for optomechanical
experiments, instead of the DLW polymer drums used in this work. Most of the works feature
"macroscopic" cavity optics, while others ([38], [39]) are also using fiber-cavities and therefore
offer a better comparison.

Publication Ωm Γm/2π κ/2π G(1) g0/2π

Thompson et al. (2008) [12] 134 kHz 12 Hz 150 kHz 8.4 MHz/nm 300 Hz
Flowers-Jacobs et al. (2012) [38] 1.7 MHz 87 Hz 0.1 GHz 3 GHz/nm −
Hornig et al. (2020) [51] 7 MHz 35 kHz 37 GHz 25 GHz/nm 6.8 kHz
de Jong et al. (2020) [52] 150 kHz 0.15 Hz 600 kHz − 2 Hz
Piergentili et al. (2021) [53] 230 kHz 1.6 Hz 33 kHz − 0.33 Hz
Rochau et al. (2021) [39] 932 kHz 4.7 Hz 16.8 MHz 1 GHz/nm 1 Hz

This thesis (so far) 1.6 MHz 101 kHz 1 GHz 11 GHz/nm > 25 kHz

Table 4.2: Comparison of the most decisive optomechanical quantities between this experiment and
other, more well-established MIM experiments. The values stated for this thesis correspond to the
maximum values achieved so far for each category.

While the optomechanical coupling strength of the polymer drum MIM cavity already
delivers promising results, the remaining parameters are still mostly subpar. As mentioned,
the experiment is not yet performed in vacuum which will drastically increase the mechanical
quality of the drum membrane and efforts have been made to further improve the optical
quality as well, as touched on in section 3.3.1. The polymer drum MIM cavity also offers
major advantages in terms of flexibility and integration into the fiber cavity, as almost any
arbitrary dielectric geometry can be written and easily implemented into the system. The shift
to a complete FFPC also allows for further miniaturization and is discussed in the following
outlook.
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Up to this point, all measurements of the optomechanical coupling strength were performed in
air. Since the motion of the mechanical drum membrane is heavily damped and restricted in
such an environment, the next step to take is to perform these measurements in a regulated
vacuum chamber. This will drastically increase the mechanical Q-factor and previously unseen
mechanical resonances of higher-order drum modes with higher eigenfrequencies may become
visible in the frequency noise spectrum 27. By improving the mechanical Q-factor (and the
mechanical linewidth Γm/2π), small shifts of the mechanical resonance frequency due to the
optical spring effect [13] may be resolved and measured.
The MIM setup utilized so far is still not compact enough (and also features vacuum-
incompatible components) to be installed into our vacuum chamber (see Fig. 4.14). To
remedy this issue, the compactness and intrinsic vacuum compatibility of the complete FFPC
can be utilized. This is achieved by using glass ferrules to compactly integrate fibers into a
monolithic cavity setup. Instead of printing the polymer drums onto a flat macroscopic mirror,
a fiber-end facet will host just a singular drum structure and combined with the in-coupling
fiber-mirror, our MIM cavity can be drastically miniaturized.
This chapter serves as an extended outlook and gives an overview of the vacuum chamber, the
fabrication of the monolithic FFPCs and the attempted (and failed) implementation of the
FFPCs into the vacuum chamber.

The vacuum chamber The geometry of the vacuum chamber is shown in Fig. 4.14. It
features a 30 cm × 15 cm cylindrical main chamber with three outgoing flange branches. Two
are used to evacuate the chamber by first doing a gross pumping of the setup with a turbopump
28 to sufficient pressure levels that allow for the operation of the ion pump 29. Afterwards, the
turbopump is turned off, as it introduces large mechanical vibration that may compromise
the quality of the measurements, and the ion pump is turned on to keep the pressure at the
desired level.
A small "X"-flange that is connected to the main chamber is used as the experimental chamber
for the monolithic FFPC (see Fig. 4.14, red dashed rectangle). It features a fiber feedthrough
made by drilling a small opening into the flange that is also connected to a pipe fitting. In
order to test the overall performance of the chamber, a test-fiber is threaded through the small
opening (see Fig. 4.14, blue dashed rectangle) and through a small custom-made perforated
Teflon cone that is situated inside the pipe fitting. The screw cap of the pipe fitting is then
tightly screwed shut, squeezing the Teflon piece into the pipe fitting to seal the fiber entrance.
This offers an easy way to seal the fiber feedthrough without relying on epoxies to permanently
and irreversibly seal the fiber entrance. Another port of the X-flange is used as an electrical
feedthrough (see Fig. 4.14, green dashed rectangle) to power the piezo that will scan the FFPC,
while the final port is left unused as a glass viewport (see Fig. 4.14, orange dashed rectangle).
The final pressure levels achieved for this test-run of the chamber (without bake-out) reached
up to P ≈ 5 · 10−9 mbar (read-out from the ion pump sensor), which is more than sufficient
for first tests with optomechanical structures inside the vacuum chamber.

27Higher-order modes at higher resonance frequencies become interesting for resolved-sideband cooling of the
mechanical drum, where energy from the membrane vibration is dumped into cavity field to potentially cool
the drum membrane down to its ground state [13].

28Leybold Vacuum PT 70
29Agilent Technologies Vacion plus 75 Starcell
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Figure 4.14: Complete vacuum chamber setup. The main chamber is connected to a turbo- and an
ion pump used to evacuate the setup. The experiment chamber is connected to the main chamber
and will be used to host the monolithic FFPC (marked by the red dashed rectangle) explained in the
following paragraph. The in-coupling fiber of the cavity is threaded through a feedthrough inside the
flange (marked by the blue dashed rectangle). The out-coupling fiber is not further connected to the
outside, as the transmission is not measured for this experiment. For visual clarity, the test-fiber that
is threaded through the fiber feedthrough is marked in red. At the front, an electrical feedthrough
connects the copper wires connected to the monolithic FFPC to the outside (marked by the green
dashed rectangle). Finally, the last flange end is left open as an additional viewport (marked by the
orange dashed rectangle). An overview of the full vacuum chamber setup is given in the black dashed
inset at the bottom.

Design and fabrication of monolithic FFPCs The centerpiece to the monolithic FFPC
is the glass ferrule 30 - a solid 8mm × 1.25mm × 1.25mm large block made of fused silica
with a single bore featuring an inner diameter of 131 µm. The bore hosts two opposing fiber
mirrors each with a diameter of 125 µm. Thus, the mirror alignment is strictly limited to a
relative translation and rotation between fibers (in contrast to the hybrid cavities used in
section 4.1.1) and the obtainable Finesse and coupling depth values strongly depend on the
quality of the fiber mirror fabrication [50]. Even though this might retrospectively decrease
the expected Finesse and coupling depth of the cavity compared to the hybrid system, this
monolithic design benefits from high passive stability [50] and vacuum compatibility.
To be able to freely scan the cavity over multiple FSR, the ferrule is glued (using silver epoxy
31) to a ceramic piezo element 32 of dimensions 10mm × 2mm × 1mm large enough to host

30VitroCom: https://www.vitrocom.com/
31EPO-TEK H20E-PFC
32PI ceramic GmbH: https://www.piceramic.com/
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the ferrule.

Figure 4.15: (a) Schematic of the monolithic FFPC. The inset in the red dashed box shows a microscope
picture of two opposing fiber-mirrors glued inside a glass ferrule. Image adapted from [50]. (b) Finesse
and coupling depth of two monolithic FFPCs with coated drums against the cavity length Lcav. The
values after gluing are outlined in green.

Copper wires are fixed to the two contacts of the piezo ceramic with the conductive silver
glue. By again applying a triangular signal, the piezo-electric element (and hence the glass
ferrule) performs a longitudinal deformation along the fiber axis, which by fixing the two
fibers in the glass bore with UV-epoxy 33 34 allows for scanning the cavity length up to a few
FSR 35 (for the ferrules fabricated here, typically 2− 3 FSR were possible). A sketch of the
resulting monolithic FFPC is depicted in Fig. 4.15 (a).
As a first test, two monolithic FFPCs were built featuring a T1 = 2000ppm in-coupling fiber
mirror and a bare fiber-end facet hosting a single polymer drum that has been coated with the
same reflective coating (T2 = 2000 ppm) as the in-coupling fiber 36. With this, the cavities are
now of the generic "mirror-on-a-spring" type. Before gluing the fibers into place, a Finesse and
coupling depth analysis is performed to measure the overall optical performance of the specific
fiber combinations against different cavity lengths (refer to Fig. 4.15 (b)). The measured
Finesse is much lower than the expected F ≈ 1500. This is most likely due a to less than ideal

33EPO-TEK OG116-31
34The UV-epoxy is applied after the fibers are properly aligned inside the ferrule and the final cavity length

is fixed. After applying a small droplet of the UV-glue at the entrance of the bore, capillary forces between the
fiber and the bore-walls suck in the epoxy which is subsequently hardened by UV-illumination.

35The triple slotted ferrules used here allow for larger FSR scan ranges [50]
36Since there was no time left to print polymer drums on coated fibers, fiber-end facets with coated polymer

drums from an old coating run were used instead.
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coating procedure that introduced cracks and irregularities into the mirror coating on the
drum since the coating procedure is not yet optimized to include polymer membranes. After
evaluating the Finesse measurements, a final cavity length of Lcav = 20 µm is chosen and the
fibers are finally glued in place.

Attempting to measure the optomechanical coupling strength Before finally insert-
ing the FFPCs into the vacuum chamber, a cavity-lock is performed to characterize the
mechanical properties of the drum out of vacuum. However, neither cavity displayed a mechan-
ical noise resonance corresponding to the drum motion, even after scanning over the whole
frequency spectrum of the ESA (up to roughly 150 MHz). There are a few possible reasons
that could explain this behavior: since the fiber-end facets hosting the drum structures were
sent out and delivered to the coating company, the fragile drums might have been severely
damaged during the delivery (or completely destroyed), hampering the mechanical motion of
the membrane. Additionally, the reflective coating on the drum membrane itself might also
further damp out the drum motion.
Since both drums did not show any signs of a mechanical resonance out of vacuum, the
monolithic drum FFPCs have not yet been inserted into the vacuum chamber. As the next
step, un-coated drums will be directly printed onto fibers mirrors again (creating a MIM
cavity), without sending them through a coating run. This will reduce the risk of damaging
the polymer drums and hopefully allow for a successful implementation of the FFPCs into the
vacuum chamber.
Afterwards, it is planned to try to measure the optical spring effect, as it is a standard phe-
nomenon that occurs in optomechanical systems in the unresolved-sideband regime (κ > Ωm).
It describes the shift on the mechanical resonance frequency δΩm due to the optomechanical
interaction [13]:

δΩm(∆)
∣∣
κ�Ωm = g2

0n̄cav
2∆

κ2/4 + ∆2 (4.25)

with cavity detuning ∆, optical loss rate κ, average cavity photon number n̄cav and the
optomechanical coupling strength g0. Eq. (4.25) also implies that the drum resonator will
be spring softened for red-detuned light (∆ < 0) and spring hardened for blue-detuned
light (∆ > 0). In the case of the polymer drum cavity, the expected frequency shifts are
approximated to be in the range of a few kilohertz.
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Chapter 5
Conclusion and outlook

As a first step towards polymer-based MIM fiber-Fabry-Perot cavities, a hybrid cavity experi-
ment consisting of an in-coupling fiber-mirror and a flat mirror that hosts 3D laser-written
membranes has been successfully set up. Optomechanical coupling between the mechanical
mode of the membrane and the optical mode of the cavity has been measured with coupling
strengths above 25 kHz. As a next step, monolithic FFPCs will be utilized to integrate the
MIM system into a vacuum chamber. Further optimizations of the drum geometry are planned
to improve the measured mechanical Qm factor. Moreover, higher-order vibrational modes of
the drum (such as the aforementioned breathing modes) with larger mode frequency will be
investigated to progress towards a sideband resolved system (κ < Ωm) [13]. This also requires
substantial improvements of the optical quality of the polymer membrane. Further rigorous
testing of different polishing techniques has to be performed to fully optimize the polymer
structures.
After the full characterization and optimization of the single drum MIM experiment, the
next step will be the extension of the system towards multiple coupled mechanical resonators.
This will allow us to study collective phenomena of mechanical resonators [54], increase the
optomechanical coupling to collective mechanical modes [55], and ultimately lead to mechanical
metamaterials that can be interfaced through optical cavities [56]. One possible realization of
this could be a stack of multiple polymer drums taking advantage of the flexible fabrication
offered by the direct laser writing technique.
A possible application of the 3D laser written MIM cavity is that of a highly sensitive force
sensor. This has advantages over conventional sensors in terms of an all-optical readout, still
offering strong compactness and integrability.
Finally, the presented MIM cavity can also be a potential platform for coupling optical and
microwave resonators via an intermediate mechanical mode. This would require to couple the
mechanical membrane to a microwave resonator or ideally directly integrate it onto the tip of
the optical fiber system. First implementations of electrical contacts on fiber end facets have
been realized by the group of Prof. Linden and pave the way to combine the current system
with electrical elements. This would have the potential to serve as a platform for unitary
frequency conversion for quantum networking.
All in all, fiber cavities with integrated 3D laser-written polymer membranes for optomechan-
ical experiments present a promising platform for tackling the future challenges in cavity
optomechanics.
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Appendix A
Input-output relation for the power spectral
density of the harmonic oscillator

To understand Eq. (4.22), a brief derivation of how one finds the relation between the PSD
for a given external Force F (t) (input) and a consequent displacement x(t) (output) of a
typical forced and dampened harmonic oscillator is shown. To start, consider the standard
inhomogeneous differential equation describing such a system:

ẍ+ Γẋ+ Ω2x = F (t)
m

. (A.1)

In time domain, the solution of Eq. (A.1) is found by considering its Green’s function
χ(t, τ):

x(t) =
∫ +∞

−∞
dτ χ (τ)F (t− τ) (A.2)

The corresponding autocorrelation function for x(t) is thus given by:

〈
x(t1)x(t2)

〉
=
∫ +∞

−∞
dα dβχ(α)∗χ(β)

〈
F (t1 − α)F (t2 − β)

〉
where Eq. (A.2) has been utilized. Since both the input and output processes are stationary

(i.e the autocorrelation functions will only depend on time differences, not absolute time) [49],
the equation can be rewritten as [57]:

〈
x(0)x(∆t)

〉
=
∫ +∞

−∞

∫ +∞

−∞
dα dβχ(α)∗χ(β)

〈
F (0)F (∆t′)

〉
with the substitutions ∆t = t2 − t1 and ∆t′ = ∆t + α − β. Making use the of the

Wiener-Khinchin theorem (Eq. (4.20)), the corresponding PSD Sxx(ω) is found:

Sxx(ω) =
∫ +∞

−∞
d(∆t) e−iω∆t 〈x(0)x(∆t)

〉
=
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
d(∆t)dα dβ χ(α)∗χ(β)

〈
F (0)F (∆t′)

〉
e−iω∆t
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Appendix A. Input-output relation for the power spectral density of the harmonic oscillator

performing the substituiton ∆t = ∆t′ − α+ β and defining χ(ω) as the Fourier transform
of χ(t) leads to the wanted equation:

Sxx =
∣∣χ(ω)

∣∣2SFF
connecting the PSD of the input signal (F (t)) with the PSD of output signal (x(t)) via

the well-known mechanical susceptibility of the harmonic oscillator χ(ω).
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Appendix B
Autocorrelation function of a white thermal
force

Assuming a white1 thermal force acting on the mechanical oscillator, the autocorrelation
functions reads [58]:

〈
Ftherm(t1)Ftherm(t2)

〉
= f0 · δ(t1 − t2) (B.1)

for times t1 and t2 where f0 is a yet to be determined value. White thermal forces are
completely uncorrelated (hence the δ(x) function in Eq. (B.1)) with zero mean

〈
Ftherm(t)

〉
= 0

and offer a good approximation to model the effects of the environment on the drum membrane.
The differential equation that describes the dynamics of such a harmonic oscillator subject to
random fluctuating force Ftherm(t) is given by the Langevin equation [59], which reads:

meffẍ = −Γẋ+ Ftherm(t) (B.2)

where meff is the effective mass of the oscillator (drum) and Γ the mechanical damping
factor. To determine f0, the equipartition theorem [60] can be employed. By now calculating
the noise of the kinetic energy of the drum (1/2meff

〈
ẋ2(t)

〉
) with Eq. (B.2) and equating it

to kbT/2, f0 can be determined. To that end, the homogeneous solution of Eq. (B.2) reads;

˙̃x(t) = v0 · e
− Γ
meff

t

Continuing with the standard procedure, the particular solution is then given by

ẋ(t) = ˙̃x(t) ·G(t) (B.3)

with some time dependent function G(t). After plugging Eq. (B.3) back into Eq. (B.2),
determining G(t) and formally integrating, one finds:

ẋ(t) = v0 · e
− Γ
meff

t + 1
meff

∫ t

0
e
− Γ
meff

(t−t′)
Ftherm

(
t′
)
dt′ (B.4)

1In this context, white (noise) refers to a completely uncorrelated, random signal with a flat spectral density.
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Appendix B. Autocorrelation function of a white thermal force

where the L.H.S of Eq. (B.4) constitutes the homogeneous solution (the average evolution)
and the R.H.S the particular one (the contribution of the random force to the motion). To
now determine the fluctuation (noise) of the kinetic energy,

〈
ẋ2(t)

〉
is given by:

〈
ẋ2(t)

〉
= v2

0 · e−2Γt/meff + 1
m2

eff

∫ t

0

∫ t

0

〈
Ftherm (t1)Ftherm (t2)

〉︸ ︷︷ ︸
=f0 ·δ(t1−t2)

e−2Γt/meffeΓ(t1+t2)/meffdt1dt2

= v2
0 · e−2Γt/meff + f0

2Γmeff

(
1− e−2Γt/meff

)
where Eq. (B.1) has been utilized. Finally, for the equilibrium state (t→∞) of the drum

membrane, the equipartition theorem can be used to find:

lim
t→∞

〈
ẋ2(t)

〉
= f0

2Γmeff
= kBT

meff

This now leads to the desired result for the autocorrelation function for the thermal force
Ftherm(t):

〈
Ftherm(t1)Ftherm(t2)

〉
= f0 · δ(t1 − t2) = 2ΓkBT · δ(t1 − t2).
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