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Abstract

Single photons typically interact only weakly with atoms and, even less so, with each other. By coupling
photons to highly excited Rydberg states in atomic ensembles, strong long-range interactions between
polaritons are induced, enabling effective photon–photon interactions through the polariton–polariton
coupling.

This thesis presents a combined theoretical and experimental investigation of magic trapping for
atoms in both the ground and Rydberg states. The central focus is on how the trap geometry determines
the magic condition that optimizes photon storage as a collective excitation in an ultracold atomic
ensemble.

The first part of the thesis introduces electromagnetically induced transparency and the storage of
single photons as atomic spin waves. Various mechanisms that lead to dephasing of these coherent
collective excitation are discussed, including atomic motion and inhomogeneous differential light shifts
across the atomic ensemble. To mitigate these effects, a magic standing-wave trap is considered—one
that not only minimizes the differential light shift between the ground and Rydberg states, but also
provides spatial confinement of the atoms.

To identify a magic trapping wavelength, optical potentials are calculated for atoms in both the
ground and Rydberg states. This analysis goes beyond the standard dipole approximation, which breaks
down for Rydberg atoms in standing-wave traps with near-infrared wavelengths, as the wave function
of the Rydberg electron can extend over several micrometers. Instead, the full energy shift is evaluated
by accounting for the interaction of the almost-free Rydberg electron with the periodic intensity profile
of the standing-wave trap. This effect is considered to evaluate the resulting trap potentials for two
one-dimensional trap configurations—a running-wave and a standing-wave trap—both of which are
later implemented experimentally.

Next, this thesis presents the experimental apparatus for preparing ultracold ensembles of
rubidium-87 atoms, which serve as the medium for Rydberg excitations and photon storage. The
apparatus was reconstructed during the course of this work, following its relocation from the University
of Southern Denmark to the University of Bonn in 2021. An overview of the experiment is provided,
along with selected characterization steps relevant to the results presented in this thesis.

Based on the calculated trap potentials for the ground and Rydberg states, a one-dimensional trap is
implemented into the experimental apparatus. Rydberg states are difficult to trap, because the Rydberg
electron is repelled by oscillating electric fields. By coupling a Rydberg 𝑛𝑆1/2 state near-resonantly
to the 6𝑃3/2 state, attractive optical potentials for the Rydberg atoms are created. Magic trapping
conditions for both trap geometries are theoretically derived and subsequently tested in photon storage
and retrieval experiments. The optimal trap wavelength minimizes the differential light shift-induced
dephasing in both the running-wave and the standing-wave trap configuration. Additionally, it is
shown how confinement in the standing-wave trap modifies the dynamics of the storage process due
to oscillatory atomic motion within the standing-wave wells and the formation of ultralong-range
Rydberg molecules.

Parts of this thesis have been published in the following article:

[1] Lukas Ahlheit, Chris Nill, Daniil Svirskiy, Jan de Haan, Simon Schroers, Wolfgang Alt,
Nina Stiesdal, Igor Lesanovsky, and Sebastian Hofferberth, Magic running- and
standing-wave optical traps for Rydberg atoms, Physical Review A 111 (2025) 013115
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CHAPTER 1

Introduction

In quantum optics, the interaction between light quanta—single photons—and matter is studied
to explore fundamental physical principals, and to enable the control of photons for technological
applications [2, 3]. Atoms represent a powerful quantum matter platform due to their well-characterized
internal structure and the availability of precise control techniques. However, single photons generally
interact only weakly with individual atoms, and even more weakly with other photons [4].

One approach to addressing the challenge of achieving strong photon-atom coupling involves cavity
quantum electrodynamics (QED) systems [5, 6], where a single atom is coupled to an optical cavity.
Such systems have demonstrated strong coupling between photons and atoms [7–9], enabling effective
photon–photon interactions that can be used, for example, to realize single-photon switches [10] and
photon–photon quantum gates [11].

As an alternative to cavity QED, the coupling of single photons to atoms can be enhanced by
using many atoms collectively. Under the condition of electromagnetically induced transparency, the
propagating photons can be coherently converted into propagating or stationary excitations within
atomic ensembles [12, 13]. In this context, the coherent superposition of the quantum state of light and
the collective state of matter can be described as a quasi-particle known as a dark-state polariton [14].
The matter component of a dark-state polariton consists of a collective spin excitation shared across
the ensemble. These collective excitations are called spin waves and can be used to realize a quantum
memory [15–21].

Two polaritons can experience strong interactions, if one of the involved atomic states is a Rydberg
state [22]. The long-range dipolar interaction between Rydberg atoms has many applications, especially
the Rydberg blockade, which restricts the number of simultaneous excitations within a given volume
to one [23–29]. When combined with collective enhancement, this mechanism yields strong optical
nonlinearities at the few-photon level [30, 31].

Furthermore, the strong dipole–dipole interaction between Rydberg atoms has been mapped onto
optical fields [28, 32, 33], enabling photon–photon interaction mediated by polariton–polariton
coupling [34, 35]. These interactions support a range of single-photon applications, including
single-photon transistors [36, 37], phase gates [38] and quantum-logic gates [39]. However, the
performance of these applications is often limited by decoherence of the collective atomic states.
Similar decoherence is also limiting the performance of quantum memories in atomic ensembles [19,
40].

The coherence time of collective excitations in ultra-cold atomic ensembles is limited by several
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Chapter 1 Introduction

dephasing mechanisms [41]. One source of dephasing is the thermal motion of the atoms sharing
the excitation, which leads to a gradual loss of the spin wave coherence [18]. The rate of this
thermal dephasing depends on the effective 𝑘-vector of the spin wave created within inside the atomic
ensemble [42].

Encoding the dark-state polariton as a coherence between atomic ground states typically results in
small 𝑘-vector mismatches, allowing coherence times on the order of milliseconds [18, 43, 44] and,
under favorable conditions, even seconds [45]. In contrast, when a Rydberg state is involved in the
collective excitation—requiring a two-photon transition—the resulting effective 𝑘-vector is generally
larger, which increases the sensitivity to atomic motion compared to configurations involving only
ground states.

To mitigate motional dephasing, one approach is to create a spin wave phase pattern that compensates
the unknown phase resulting from thermal motion after a given storage duration [46]. Alternatively,
confining the atomic ensemble along the direction of the spin wave 𝑘-vector using an optical
standing-wave trap can restrict atomic motion in the relevant direction and thus suppress dephasing.

However, optical trapping potentials can lead to an additional dephasing mechanism arising from
the differential light shift between the ground and Rydberg states [47, 48]. In a typical optical dipole
trap, atoms in the ground state are confined, while atoms in Rydberg states experience a repulsive
potential [49]. This repulsion arises from the almost-free electron in high-lying Rydberg states. When
exposed to oscillating electric field, the free electron experiences a ponderomotive energy shift [50],
which constitutes the dominant contribution to the light shift for Rydberg states [51]. The result is an
overall repulsive potential acting on Rydberg atoms within the trapping field.

To limit the influence of both motional and differential light shift–induced dephasing mechanisms,
the atomic ensemble can be confined in optical standing-wave traps with an equal dynamic polarizability
for two (or more) involved states. In such traps—known as “state-insensitive” or magic traps [52,
53]—the optical potential experienced by the atoms is effectively the same for the involved states,
thereby suppressing differential light shift–induced dephasing.

One approach to create magic traps for ground-to-Rydberg coherences involves blue-detuned
optical traps, in which both the ground and Rydberg states are equally repelled from high intensity
regions [54, 55]. The combination of a standing-wave for axial confinement and a bottle beam for
radial confinement of the atomic ensemble requires complicated beam shaping for such a blue-detuned
magic trap. A more straightforward alternative is the use of red-detuned standing-wave traps, where
both the ground and Rydberg states can be confined with minimal differential light shifts. To counteract
the ponderomotive repulsion experienced by the almost-free electron in the Rydberg state, the trapping
wavelength can be tuned near a resonance between the Rydberg state and a low-lying state. This
near-resonant coupling strongly modifies the polarizability of the Rydberg atom [56].

However, for Rydberg states with principal quantum number 𝑛 ≳ 55, the spatial extent of the electron
wave function becomes comparable to half the wavelength of the near-infrared light typically used in
optical dipole traps [22]. In this regime, the dynamic polarizability becomes sensitive to the spatial
intensity variations of the trapping light field [50, 57, 58]. Despite these challenges, magic traps for
ground and Rydberg states have been successfully implemented in various experiments [45, 59], and
have been used to extend coherence times between ground and Rydberg states [60].

Previously, our rubidium quantum optics experiment applied two different trapping strategies. In
one approach, a red-detuned crossed optical dipole trap was used to confine atoms in the ground
state. To avoid differential light shifts during Rydberg excitation, the trapping beams were turned
off; however, this configuration still suffered from thermal dephasing. In the second approach, a
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red-detuned dimple trapping beam was used to confine atomic ensembles within volumes small enough
to be fully blockaded by the Rydberg interaction. In this case, the dimple trap remained on during the
Rydberg experiments and the induced light shift was exploited to distinguish atoms inside the trap
from those outside, thereby improving the fidelity of the Rydberg blockade [61]. Nevertheless, in
these small ensembles, the coherence of the collective excitations remained limited by both thermal
and the differential light shift–induced dephasing.

In this thesis, I report on the implementation of a magic trap for Rydberg atoms and its application
to extend the coherence times of collective Rydberg excitations. In Chapter 2, I introduce the
theoretical concepts relevant to the Rydberg quantum optics experiments presented in this work.
Subsequently, in Chapter 3, I derive the trapping potentials for both the ground and the Rydberg state,
providing a theoretical basis for the realization of a magic trap. Chapter 4 describes the reassembly
of the experimental apparatus following its relocation from Odense, Denmark, to Bonn, Germany,
in 2021. The primary upgrade to the setup was the integration of the magic trap, used to confine
the atomic ensemble that serves as the platform for collective Rydberg excitations. In Chapter 5,
I detail the experimental implementation and the use of collective excitations to probe differential
light shifts within a one-dimensional trap. Through photon storage and retrieval experiments, I
resolved differences in the effective polarizability of Rydberg atoms confined in running-wave and
standing-wave trap configurations. Finally, Chapter 6 summarizes the results of this thesis and outlines
potential experimental improvements and future directions for investigation.
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CHAPTER 2

Nonlinear Quantum Optics with Collective
Rydberg Excitations

Throughout this thesis, light storage is considered as collective excitations in ensembles of atoms. This
chapter introduces the relevant theoretical concepts and equations. First, electromagnetically induced
transparency (EIT) in a three-level system is presented [62], along with a discussion of how EIT
enables the storage of photons as collective excitations in atomic media. The chapter then introduces
Rydberg states and highlights their extreme properties in comparison to ground-state atoms. We
review the mapping of strong atomic interactions between Rydberg states onto photons. Finally, we
examine the limitation of collective Rydberg excitations when using them for single photon storage
experiments.

2.1 Electromagnetically Induced Transparency

For the discussion in this thesis, we first consider a three-level system. Figure 2.1(a) shows a
three-level ladder scheme with a weak probe field close to resonance with the ∣1⟩↔ ∣2⟩ transition.
The transmission of the probe field with frequency 𝜔 through the atomic medium is modified in
the presence of a strong control laser driving the ∣2⟩ ↔ ∣3⟩ transition. The modification in such a
three-level system is for instance electromagnetically induced transparency (EIT) [12] or coherent
population trapping [63]. We focus our discussion on the ladder scheme in Fig. 2.1(a) as it is relevant
in the case where the upper state ∣3⟩ is a Rydberg state.

For the three-level system in Fig. 2.1, the linear susceptibility as function of frequency 𝜔 is in the
weak probe field limit given by [62, 64]

𝜒
(1)(𝜔) = ∣𝜇12∣2𝜌

𝜖0 ℎ̵
[ 4𝛿(∣Ω32∣2 − 4𝛿Δ21) − 4Δ21𝛾

2
31

∣∣Ω32∣2 + (𝛾21 + 𝑖2Δ21)(𝛾31 + 𝑖2𝛿)∣2

+𝑖 8𝛿2
𝛾21 + 2𝛾31(∣Ω32∣2 + 𝛾31𝛾21)

∣∣Ω32∣2 + (𝛾21 + 𝑖2Δ21)(𝛾31 + 𝑖2𝛿)∣2
]. (2.1)

Here, 𝜇12 is the electronic dipole moment for the ∣1⟩↔ ∣2⟩ transition, 𝜌 is the atom number density, ℎ̵
is the reduced Planck constant, Δ21 = 𝜔 −𝜔21 and Δ32 = 𝜔 −𝜔32 are the single-photon detunings on
the probe and control transition, 𝛿 = Δ21 −Δ32 is the two-photon detuning, and Ω32 is the control Rabi
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Chapter 2 Nonlinear Quantum Optics with Collective Rydberg Excitations

Figure 2.1: (a) Three atomic levels coupled by two laser beams with Rabi frequencies Ω21(32) and transition
frequency 𝜔21(32) = ∣𝐸2(1) − 𝐸3(2)∣/ℎ̵, respectively. (b), (c), (d) Theoretical calculation of the real (dashed)
and imaginary (solid) part of the susceptibility 𝜒

(1), normalized to the prefactor in Eq. 2.1, in the top row
and transmission in the bottom row as function of the detuning Δ21. The calculation is for control Rabi
frequency Ω32 = 2𝜋 × 8 MHz, and decay rates 𝛾21 = 2𝜋 × 6.07 MHz and 𝛾31 = 2𝜋 × 0.1 MHz. The control
detuning is different for (b), (c), and (d). The three cases are (b) electromagnetically induced transparency
with Δ32 = 2𝜋 × 0 MHz, (c) an intermediate regime with Δ32 = −2𝜋 × 20 MHz, and (d) a two-photon Raman
resonance with Δ32 = −2𝜋 × 100 MHz. The small schematics show the resonant two-photon transition between
∣1⟩ and ∣3⟩ in the three cases.

frequency.
The transmission through and refractive index of an optically thick medium follows from the

susceptibility as [64]

𝑇(𝜔) = exp(−𝑘𝐿 Im [𝜒(1)(𝜔)]), (2.2)

𝑛(𝜔) =
√

1 +Re[𝜒(1)(𝜔)], (2.3)

with the wave vector of the light 𝑘 = 2𝜋/𝜆, the wavelength of the light 𝜆, and the atomic cloud length 𝐿.
Figure 2.1(b) shows the real and imaginary parts of the linear susceptibility 𝜒

(1)(𝜔) in resonance
with the intermediate state ∣2⟩. The corresponding theoretical transmission, shown in the lower panel
and calculated using Eq. 2.2, exhibits a transparency window for the probe field. The transmission on
this EIT resonance does not reach unity, as a finite decay rate 𝛾31 from the state ∣3⟩ to the state ∣1⟩ is
taken into account.

For larger detunings Δ32, as shown in Fig. 2.1(c) and 2.1(d), the transmission feature transitions
from a transparency window into a dispersive shape and, at sufficiently large detuning, into a narrow
two-photon Raman resonance [65], respectively.

The EIT transmission peak shown in Fig. 2.1(b) is accompanied by a positive slope of the real part
of the susceptibility, which determines the light propagation through the medium. For a wave packet
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2.1 Electromagnetically Induced Transparency

that travels under EIT conditions, the group velocity is given by [64]

𝑣gr =
𝑑𝜔

𝑑𝑘
∣
𝛿=0
= 𝑐

𝑛 +𝜔 ⋅ (𝑑𝑛/𝑑𝜔) . (2.4)

The experimental control over the refractive index allows slowing down an incoming probe field inside
an atomic ensemble [16, 66]. In the case of a few-photon probe pulse, the superposition between
the photonic and matter states can be described as a quasi-particle, a dark-state polariton [14]. The
properties of these polaritons are given by the mixture between the atomic coherence and the probe
light field.

2.1.1 Storage of Light Pulses in Collective States

The mechanism of slowing down a light pulse introduced in Eq. 2.4 can be continued to the storage of
a light pulse by completely turning off the control light [17].

During the photon storage, where the control light on the transition ∣2⟩↔ ∣3⟩ is absent, the dark-state
polariton is fully transferred into the coherence between the states ∣1⟩ and ∣3⟩. A single photon stored
as a shared excitation across an ensemble of 𝑁 atoms can be viewed as a wave of excited spins [67]
and described as an entangled Dicke-like state given by [68, 69]

∣𝜓(𝑡)⟩ = 1√
𝑁
∑
𝑗

exp [𝑖 𝒌 ⋅ 𝒓 𝑗(𝑡)] ∣11 . . . 3 𝑗 . . . 1𝑁 ⟩ , (2.5)

where 𝒌 is the wave vector of the photon excitation, and 𝒓 𝑗(𝑡) denotes the three-dimensional position
of atom 𝑗 at time 𝑡. The state ∣11 . . . 3 𝑗 . . . 1𝑁 ⟩ denotes the state where the 𝑗 th atom is in state ∣3⟩, and
all other atoms are in state ∣1⟩. The polaritons have been turned into stationary collective excitations,
where the polaritons are mapped onto atomic hyperfine ground states [15, 16]. In such an EIT scheme,
storage durations in the millisecond [18, 43, 44] to minute [45] timescale have been experimentally
demonstrated.

The storage duration is limited by the dephasing of the stored collective state. To investigate where
the decoherence comes from, the time evolution of the collective state is considered, and the retrieval
efficiency 𝜂(𝑡𝑠) is calculated. The spin wave that can be converted back into a forward propagating
photon by the coupling with the control laser is denoted by ∣𝜓(0)⟩. During the storage duration 𝑡𝑠, the
collective state evolves into the state ∣𝜓(𝑡𝑠)⟩. The retrieval efficiency 𝜂(𝑡𝑠) that quantifies the quantum
state overlap after a time 𝑡𝑠 is given by [48]

𝜂(𝑡𝑠) = ∣ ⟨𝜓(0)∣𝜓(𝑡𝑠)⟩ ∣2. (2.6)

Since the photon is stored in the medium as an atomic coherence, the storage duration is limited by
various mechanisms [41], including thermal atomic motion [18], state lifetimes, and differential light
shifts across the atoms that share the coherence [47]. The motion of each contributing atom 𝑗 modifies
the phase of the collective state in Eq. 2.5, which leads to a decoherence in the state overlap upon
photon retrieval. In the thermal expansion of the atomic ensemble, the atom 𝑗 follows a trajectory
like 𝒓 𝑗(𝑡) = 𝒓 𝑗 ,0 + 𝒗 𝑗 𝑡 with a velocity 𝒗 𝑗 . In that case, the quantum state overlap in Eq. 2.6 is given by
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Chapter 2 Nonlinear Quantum Optics with Collective Rydberg Excitations

a Gaussian decay as [18, 70]

𝜂(𝑡𝑠) = 𝜂0𝑒
−𝑡

2
𝑠 /𝜏

2
T . (2.7)

Here, 𝜏T is the decay constant, or coherence time, of this Gaussian decay envelope, and 𝜂0 is a constant
that captures imperfections during the storage and retrieval, like residual absorption. The decay
constant is related to the atomic temperature 𝑇 as

𝜏T = 1/ (𝑘 𝑣atoms) = 1/ (𝑘
√
𝑘B𝑇/𝑚) , (2.8)

where 𝑣atoms is the one-dimensional average speed and 𝑘 = 2𝜋/𝜆 is the wave vector component in the
direction of the movement. In order to extend the storage duration, the mean velocity of the atoms can
be reduced by laser cooling [71–73]. Additionally, the collective state in Eq. 2.5 becomes less sensitive
to the time evolution of the atom positions 𝒓(𝑡) for lower effective 𝑘-vectors. As an example, the
collective excitation can be created with the absorption of two photons, as shown in Fig. 2.1(b). The
resulting effective vector 𝒌 = 𝒌1 + 𝒌2 can be tailored with the wavelength and propagation direction of
the two photons, with their respective 𝑘-vectors 𝒌1 and 𝒌2 [74]. The storage in an EIT scheme with
two atomic ground states (a so-called Lambda scheme) makes use of similar wave vectors of the two
photons, while the two photons co-propagate, to result in low effective 𝑘-vectors [15, 16].

For the EIT ladder scheme in Fig. 2.1(a) two photons have to be absorbed, and it is advantageous to
send the two counter-propagating to partially cancel the momentum kick onto the atom associated
with photon absorption [75, 76]. For parallel excitation beams, the vector multiplication between the
wave vector 𝒌 and position 𝒓(𝑡) implies that only the atomic movement along the 𝑘-vector becomes
relevant.

Besides the thermal dephasing, the collective state in Eq. 2.5 is influenced by the surroundings
of the atoms. In the scope of this thesis, the relevant effect is the presence of the trapping potential
during the Rydberg experiments. In Ref. [48], a model for photon storage and retrieval experiments is
developed that includes the dephasing of the collective state by differential light shifts. The model
describes the time evolution of atoms trapped in a red-detuned optical dipole trap. The collective state
in Eq. 2.5 is extended with a phase factor exp [−𝑖𝑈𝑞, 𝑗(𝒓)𝑡/ℎ̵] for each atom 𝑗 in its respective state 𝑞.
Here, the position-dependent trapping potential is denoted with 𝑈𝑞, 𝑗(𝒓), and two different trapping
potentials can be considered for the states ∣1⟩ and ∣3⟩.

As another decoherence mechanism, the coherence in the collective excitations can be lost through
the decay of any involved atomic state [41]. In the photon storage and retrieval experiments, the
radiative decay is given by

𝑓 (𝑡𝑠) = 𝐴 exp (−𝑡𝑠/𝜏) , (2.9)

where the timescale of the decay is given by the lifetime 𝜏. The involved states in the collective
excitation are ideally long-lived compared to the storage or gate operation in a quantum network.

2.2 Rydberg States

The realization of slow or stored light in atomic ensembles enables new opportunities of few-photon
manipulation. As one example, the excited state ∣3⟩ in the three-level scheme in Fig. 2.1(a) can
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2.2 Rydberg States

be a Rydberg state [28]. Rydberg states of atoms are characterized by strong and long-range
interactions [77]. In the following section, we introduce Rydberg atoms, and discuss the possibility of
mapping Rydberg-Rydberg interactions onto photons.

Rydberg atoms are atoms excited into states with high principal quantum number 𝑛 [22]. The
properties of Rydberg atoms compared to ground-state atoms are given in table 2.1 for rubidium-87.

Below, we provide the properties of Rydberg states that are relevant for the rest of the thesis. The
binding energy for an alkali atom excited to a Rydberg state is given by [22]

𝐸(𝑛, 𝑗 , 𝑙) = − 𝑅
′

(𝑛∗)2
, (2.10)

with the specific Rydberg constant 𝑅′ and the effective principal quantum number 𝑛∗ = 𝑛 − 𝛿𝑛 𝑗𝑙 . The
quantum defects 𝛿𝑛 𝑗𝑙 are corrections to the case of hydrogen, and describe the shielding of the core by
the inner electrons, such that the single outer electron experiences a weaker potential.

The quantum defects depend on the total angular momentum quantum number 𝑗 = ∣𝑙 ± 𝑠∣, the orbital
angular momentum quantum number 𝑙, and the spin quantum number 𝑠. In high Rydberg states, the
valence electron is only weakly bound, which leads to a largely increased size of the electron wave
function. The electron orbit radius 𝑟e can be calculated as the most probable electron radius with

𝑟e = ⟨𝑟⟩ = ⟨𝑛𝑆∣𝑟 ∣𝑛𝑆⟩ = ∫
∞

0
𝑅

2(𝑟)𝑟3
𝑑𝑟. (2.11)

Here, 𝑅(𝑟) is the radial electron wave function in the Rydberg state 𝑛𝑆 [78, 79]. 𝑟e can be approximated
by [22]

𝑟e = [3(𝑛∗)2 − 𝑙(𝑙 + 1)]/2.

The two calculations agree within a few percent, and if not stated otherwise we use Eq. 2.11 in this
thesis. The Rydberg atom with the large electron wave function is sensitive to external fields, and this
is described by the static polarizability 𝛼static given by [80]

𝛼static = [2.202 × 10−9(𝑛∗)6 + 5.53 × 10−11(𝑛∗)7]MHz/(V/cm)2. (2.12)

The large electron wave function in Rydberg states also results in a small overlap integral with low-lying
states. The overlap is characterized by the reduced matrix elements 𝐷𝑎𝑛 between two atomic states
with principal quantum number 𝑎 and 𝑛 as

𝐷𝑎𝑛 = ⟨𝑎𝑃3/2∣∣𝑑∣∣𝑛𝑆1/2⟩. (2.13)

The reduced matrix element for a Rydberg 𝑆-state as 𝐷𝑎𝑛 ∝ (𝑛∗)−3/2. The lower reduced matrix
element in Table 2.1 for the Rydberg state means a reduced coupling of optical light fields to the upper
transition of the EIT scheme in Fig. 2.1(a).

One benefit of weaker coupling of Rydberg states to lower-lying states is a prolonged lifetime [22].
Here, we present the equations to calculate the lifetimes relevant for our experimental parameters.

A simple model for spontaneous and blackbody-radiation-induced transitions was developed by
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Chapter 2 Nonlinear Quantum Optics with Collective Rydberg Excitations

Table 2.1: The scaling of atomic state properties with the effective principal quantum number 𝑛∗. The two
example states are for rubidium-87 atoms. The transition dipole moments are calculated as the reduced matrix
elements ∣⟨5𝑃3/2∣∣𝑑∣∣𝑛𝑆1/2⟩∣ in Eq. 2.13, following the definition in Ref. [79]. 𝑎0 is the Bohr radius, and 𝑒 is the
elementary charge. Table adapted from Ref. [81].

Property (𝑛∗)𝑥 5𝑆 - ground state 90𝑆 - Rydberg state

Binding energy 𝐸 (𝑛∗)−2 4.18 eV 1.8 meV

Electron orbit radius 𝑟e (𝑛∗)2 5.632 a0 11319 a0

Static polarizability 𝛼 (𝑛∗)7 −79.4 MHz/(V/cm)2 −1494 MHz/(V/cm)2

Reduced matrix element 𝐷𝑎𝑛 (𝑛∗)−3/2 5.98 ea0 0.006 ea0

van der Waals 𝐶6 coefficient (𝑛∗)11 4707 au −1.16 × 1023 au

Beterov et al. [82]. At zero temperature, the Rydberg state lifetime is given by

1
𝜏0
= 1

𝜏s ⋅ (𝑛∗)
𝛿
, (2.14)

where 𝜏s and 𝛿 for Rb are given in table II in Ref. [82]. The lifetime due to spontaneous decay is
commonly approximated by the scaling 𝜏0 ∝ (𝑛∗)3 [81]. The modified principal quantum number
𝑛
∗ = 𝑛−𝛿𝑛𝑙 𝑗 is calculated using quantum defects 𝛿𝑛𝑙 𝑗 from Ref. [83] for rubidium-87. For temperatures

above zero, the blackbody radiation (BBR) introduces another decay channel for Rydberg states into
all lower lying states. In Ref. [82], a semi-empirical analytical function is given as

1
𝜏BBR(𝑇)

= 𝐴

(𝑛∗)
2.14 × 1010

exp[315780 ⋅ 𝐵/ ((𝑛∗)𝐶 ⋅𝑇)]
. (2.15)

The parameters 𝐴, 𝐵, 𝐶, and 𝐷 for Rb are given in table I of Ref. [82]. Both effects together give an
effective lifetime as

1
𝜏eff
= 1
𝜏0
+ 1
𝜏BBR(𝑇)

. (2.16)

At room temperature 𝑇 = 300 K, the effective decay constant is 𝜏eff ≈ 49 µs at 𝑛 = 45 and 𝜏eff ≈ 263 µs
at 𝑛 = 90. In all the photon storage and retrieval experiments in this thesis, we are generally limited by
other effects instead of the spontaneous and the blackbody-radiation-induced decay.

2.3 Rydberg Interactions

The interaction between two highly excited atoms in the same state 𝑛𝑆 can be calculated by the
application of non-degenerate second-order perturbation theory [84, 85]. In general, the energy shift
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of a quantum state 𝑞 arising from the interaction with operator �̂� can be written as [78, 86]

Δ𝐸𝑞𝑞 = ∑
𝑖, 𝑗≠𝑞

∣ ⟨𝑞𝑞∣�̂� ∣𝑖 𝑗⟩∣2

𝐸𝑞𝑞 − 𝐸𝑖 𝑗

, (2.17)

where 𝐸 are the unperturbed energies of states 𝑞 and all other states 𝑖 and 𝑗 coupling to state 𝑞.
Generally, the interaction between two dipoles scales with �̂� ∝ 1/𝑅3. As Rydberg atoms are neutral,
there is no direct dipole–dipole interaction between two 𝑆-states. Instead, two Rydberg 𝑆-states
interact via their induced dipoles and the resulting interaction for a distance 𝑅 between the Rydberg
atoms is given by [85]

𝑉vdW(𝑅) = −
𝐶6

𝑅
6 , (2.18)

which is the leading order of the van der Waals interaction. The 𝐶6 coefficient characterizes the
interaction between two 𝑛𝑆 Rydberg states and scales with the principal quantum number as (𝑛∗)11,
see Table 2.1.

The energy shift due to the Rydberg–Rydberg interaction can be used for different applications. In
one application, the energy shift can be used to limit the number of excitations in an atomic medium [23].
The two excitations lasers, in Fig. 2.1(a), are set to a two-photon detuning of 𝛿 = 2𝜋 × 0 MHz. A
second Rydberg excitation is only possible at distances, where the interaction induced level shift is less
than the transition linewidth to the Rydberg state, where the linewidth is given by the laser linewidth
as well as the laser power. This distance is called the Rydberg blockade radius 𝑟B.

In an ensemble smaller than the blockade radius 𝑟B, the Rydberg blockade realizes an effective
two-level system with enhanced coupling to single photons, so-called Rydberg superatoms [30, 87].
Multiple properties of Rydberg superatom have been studied, including internal dynamics [88], and
their dipole moment [89]. The generally undesirable dephasing of the collective excitations can be
used to subtract photons from an incoming photon pulse [90]. The scheme can be extended to subtract
𝑚 photons, where the photons are absorbed by 𝑚 superatoms [91]. Each superatom dephases into a
dark state that does not emit into the desired forward propagating mode. Thereby, the 𝑚 photons are
removed from the outgoing light pulse.

The energy shift due to the Rydberg–Rydberg interaction can shift neighboring atoms into resonance
with the excitation lasers. The presence of one Rydberg atom facilitates the excitation of neighboring
atoms into Rydberg states, which is known in literature as Rydberg facilitation [92–94]. The study of
epidemic dynamics has recently been studied in the spread of Rydberg excitations across an atomic
gas [95–98].

The strong interaction between two Rydberg atoms can mediate an effective interaction between
two photons [26, 27]. Two single photons can be mapped into collective atomic states, as in Eq. 2.5,
in two spatially separated ensembles and the long-range interaction results in detectable correlations
between the two photons [99]. Furthermore, the effective interaction between photons mediated by
Rydberg excitations lead to the observation of bunching [34] and anti-bunching [32, 35] of light.
While the photons are stored in the collective excitations, they can be manipulated by e.g. microwave
fields [100].
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Chapter 2 Nonlinear Quantum Optics with Collective Rydberg Excitations

2.4 Limitations for Photon Storage in Collective Rydberg Excitations

The experiments in this thesis are performed with collective states described by Eq. 2.5, where the
excited state ∣3⟩ is a Rydberg state. In this section, we discuss the implications and limitations that
arise from involving a Rydberg state in the collective state.

As already discussed, the movement of the atoms during the typical duration of our experiments
poses limitations for the achievable coherence times. The temperature of the atomic cloud represents
the mean velocity of the atoms, and quantifies the decay rate caused by motion as introduced in Eq. 2.8.

For a temperature of 𝑇 = 2 µK, the average speed for rubidium-87 is 𝑣atoms = 0.014 µm/µs.
Therefore, the atoms move approximately 0.4 µm in 20 µs, which is a typical timescale for our
experiments. This motion must be compared to the wavelength of the stored collective excitation.

For rubidium-87, the direct transition from the 5𝑆 to the 90𝑃 Rydberg state results in a spin
wave 𝑘-vector of 𝑘 = 2𝜋/297 nm = 21 µm−1. A two-photon excitation, with two beams with 𝑘1
and 𝑘2 respectively, can tune the effective 𝑘-vector 𝑘 = 𝑘1 ± 𝑘2 in comparison to a single photon
excitation, where the ± stands for co- and counter-propagating photons respectively. Therefore, a
counter-propagating scheme should be used to excite the 90𝑆 Rydberg state via the 5𝑃 intermediate
state. This excitation scheme results in an effective 𝑘-vector of 𝑘 = 2𝜋/480 nm− 2𝜋/780 nm = 5 µm−1.

In general, two similar wavelengths are advantageous to reduce the imprinted momentum, which
lead to the successful implementations in ground state schemes [18, 43]. For the case of involving
Rydberg states, one possibility of minimizing 𝑘 lies in different atomic species with a favorable
spacing of energy levels. One candidate is ytterbium with effective two-photon excitation 𝑘-vector of
𝑘 = 2𝜋/395 nm − 2𝜋/399 nm = 0.2 µm−1 [101].

While the effective 𝑘-vector can not be changed for a given atomic species, there are ways of
reducing the influence of motional dephasing. Motional dephasing can for instance be suppressed
by compensating for the phase scrambling that occurs in thermal motion of the atoms [46]. The
acquired phase factor of each atom in Eq. 2.5 can be pre-compensated by mapping the initially excited
Rydberg state onto a second Rydberg state [102]. The compensation requires a precise timing, and the
coherence time is optimized for each specific storage duration.

In case it is not possible to pre-compensate motional dephasing, one can restrict the atomic motion
along the direction of the spin wave by an optical standing wave. However, optical traps can lead to
differential light shifts on the involved atomic states. This limits the coherence time both for single
trapped atoms [103, 104], and for collective excitations [47, 105]. In this thesis, we investigate the
influence of confining the atomic ensemble in an optical standing-wave trap. The wavelength of the
trapping laser is tuned to a magic value, where differential light shifts between the ground and the
Rydberg state are minimized. The trapping potentials for atoms in both states are calculated in the
next chapter, and the experimental implementation and performance is discussed in Chapter 5.
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CHAPTER 3

Trapping Potentials for Magic Trapping of
Ground and Rydberg States

To create a magic trap with minimal differential light shifts, it is essential to know the trapping
potentials in the relevant atomic states. In this chapter, we calculate the trapping potentials for an atom
in the ground and Rydberg states. We follow the calculation presented in Ref. [60], and calculate the
potential for different trap geometries, a running-wave and a standing-wave trap. For both geometries,
we discuss and visualize the different contributions to the potential landscape. The potentials discussed
in this chapter will later be used to determine the magic wavelength and to compare theoretical
predictions with experimental results.

3.1 Atom-Field Interaction

For the calculations presented in this chapter, we treat the atom quantum mechanically and the field
classically. First, we introduce the minimal coupling Hamiltonian for a single electron in a scalar
potential 𝜙(𝒓, 𝒕) and a vector potential 𝑨(𝒓, 𝑡). For our description, we use the Coulomb gauge,1

which is defined by ∇ ⋅ 𝑨(𝒓, 𝑡) = 0, and, thereby, 𝜙(𝒓, 𝒕) = 0.
The Hamiltonian of the Rydberg electron is given by the minimal coupling Hamiltonian of a

one-electron atom2

�̂�(𝑡) = 1
2𝑚e
( �̂�e −

𝑒

𝑐
𝑨(𝒓 + 𝒓e, 𝑡))

2
+𝑉c(𝒓e). (3.1)

Here, 𝑒 and 𝑚e are the electron charge and mass, �̂�𝑒 the momentum operator of the electron, 𝑐 the
speed of light, 𝑨(𝒓, 𝑡) the laser beam vector potential, and 𝑉c(𝒓e) is the core potential. The atom
core is located at position 𝒓 and the single valence electron is at position 𝒓 + 𝒓e. The core potential is
given by the scalar Coulomb potential of the atomic core as 𝑉c(𝒓e) = 𝑒𝜙c(𝒓e) [108]. In order to find

1 Also known as radiation [106], velocity [51, 107] or transverse gauge [51].
2 The light field Hamiltonian is neglected here, because we are only interested in the shift due to the atom-field coupling with

respect to the unperturbed eigenenergies. For further reading, see Peter W. Milonni, The Quantum Vacuum (Academic
Press, 1993), Section 4.2, p. 115. [108]
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solutions to the minimal-coupling Hamiltonian, the first term is multiplied out as

�̂�(𝑡) = 1
2𝑚e
( �̂�2

e −
𝑒

𝑐
�̂�e ⋅ 𝑨(𝒓 + 𝒓e, 𝑡) −

𝑒

𝑐
𝑨(𝒓 + 𝒓e, 𝑡) ⋅ �̂�e +

𝑒
2

𝑐
2 𝑨

2(𝒓 + 𝒓e, 𝑡)) +𝑉c(𝒓e).

The quantum operator �̂�e and the classical field 𝑨(𝒓 + 𝒓e, 𝑡) commute. Then, the Hamiltonian can be
written as

�̂�(𝑡) = �̂�2
e

2𝑚e
+𝑉c(𝒓e)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�̂�0

−𝑒𝑨(𝒓 + 𝒓e, 𝑡) ⋅ �̂�e
𝑚e𝑐

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�̂�1(𝑡)

+ 𝑒
2𝑨2(𝒓 + 𝒓e, 𝑡)

2𝑚e𝑐
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
�̂�2(𝑡)

. (3.2)

The Hamiltonian is now in the form of the hydrogen-like Hamiltonian �̂�0 with the terms �̂�1,2(𝑡)
treated as perturbations periodic in time. These perturbative terms describe the interaction between
the atom and the trapping light field.

3.1.1 Dipole Approximation and Atomic Polarizability

The calculation of trapping potentials from the minimal-coupling Hamiltonian in Eq. 3.2 is often
performed for ground-state atoms in the dipole approximation [109]. The trapping of particles that are
point-like in relation to the optical wavelength is well described for optical dipole traps [110–112].
While optical dipole traps are standard tools for experiments with ultracold ground-state atoms, special
care for Rydberg atoms with their larger extent as introduced in Section 2.2. In the following, we
summarize how to calculate dynamic polarizabilities and AC Stark shifts in the dipole approximation.

The classical light field is described by a vector potential corresponding to a traveling plane wave
with 𝑨(𝒓 + 𝒓e, 𝑡) ∝ exp(𝑖𝒌 ⋅ (𝒓 + 𝒓e) − 𝑖𝜔𝑡) + 𝑐.𝑐.. The wave vector of the trap laser pointing in
the 𝑥 direction is denoted by 𝒌 = 𝑘𝒆𝑥 , where 𝒌 = 2𝜋/𝜆 with the wavelength of the external field 𝜆.
Electromagnetic fields with optical frequencies have 1/𝑘 ∼ 100 nm, and this length scale can be
compared to the electron wave function radius for a given atomic state with principal quantum
number 𝑛. The electron radius 𝒓e from Eq. 2.11 is about 0.3 nm for a ground-state atom [22]. In this
case, 𝒌 ⋅ 𝒓e ∼ 10−3 ≪ 1. Figure 3.1(a) shows the small size of ground-state atoms with respect to an
optical wavelength. The vector potential part depending on the electron position 𝒓e can be expressed
as an exponential series, and with the above arguments simplified to

𝑨(𝒓 + 𝒓e, 𝑡) = 𝑨(𝑡) exp (𝑖𝒌 ⋅ (𝒓 + 𝒓e)) + 𝑐.𝑐.
= 𝑨(𝑡) exp (𝑖𝒌 ⋅ 𝒓) (1 + 𝑖𝒌 ⋅ 𝒓e + [𝑖𝒌 ⋅ 𝒓e]2/2 + . . . ) + 𝑐.𝑐.
≃ 𝑨(𝑡) exp (𝑖𝒌 ⋅ 𝒓) + 𝑐.𝑐.
= 𝑨(𝒓, 𝑡) + 𝑐.𝑐.,

with an asymptotic equality in the second to last step assuming 𝒌 ⋅ 𝒓e ≪ 1. This is generally called the
dipole approximation or the long-wavelength approximation [113].

In the field of cold atoms, the interaction part of the minimal coupling Hamiltonian in Eq. 3.2
is often simplified in the dipole approximation to the Hamiltonian �̂�

∗
int,dip = −𝒅 ⋅ 𝑬 [112], with the

atomic dipole moment 𝒅 = 𝑒𝒓e. The derivation is given in Ref. [115, p. 13] and Ref. [106, p. 148], and
only briefly outlined here. To begin with, the vector potential 𝑨(𝒓, 𝑡) in the dipole approximation is
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Figure 3.1: Rydberg atoms in a standing wave trap. (a) Atoms in the 𝑛 = 5, 𝑛 = 45, and 𝑛 = 90 state inside
a standing wave trap with 506 nm periodicity, corresponding to a wavelength of 1012 nm. The expectation
value of the Rydberg electron radius ⟨𝑟⟩ = 𝑟e is highlighted. The red dot represents the core. The core size and
radius 𝑟e in the ground state 𝑛 = 5 is not to scale with the wavelength. (b) Radial wave function of the Rydberg
electron (top) with respect to the standing wave intensity (bottom). Rydberg 𝑆-states are shown by solid lines.
The Rydberg electron radius for 𝑛 = 90 as defined in the main text is marked as a gray dotted line. Figure (a)
adapted from Ref. [114].

used. Then, the terms �̂�1(𝑡) and �̂�2(𝑡) in the minimal coupling Hamiltonian in Eq. 3.2 are given by

�̂�int,dip(𝒓, 𝑡) = −
𝑒𝑨(𝒓, 𝑡) ⋅ �̂�e

𝑚e𝑐
+ 𝑒

2𝑨2(𝒓, 𝑡)
2𝑚e𝑐

2 . (3.3)

Next, the Power-Zienau transformation [116] given by

𝑈 = exp [ 𝑖𝑒
ℎ̵
𝒓e ⋅ 𝑨(𝒓, 𝑡)] ,

is performed. The transformed wave functions Φ(𝒓, 𝑡) are given by

Ψ(𝒓e, 𝑡) = exp [− 𝑖𝑒
ℎ̵
𝑨(𝑡) ⋅ 𝒓e]Φ(𝒓e, 𝑡).

Inserting these wave functions into the Schrödinger equation with the Hamiltonian from Eq. 3.1 and
with 𝑬(𝒓, 𝑡) = −𝜕𝑨(𝒓, 𝑡)/𝜕𝑡, one finds [107]

𝑖ℎ̵𝜕Φ(𝒓e, 𝑡)/𝜕𝑡 = [�̂�0 −𝑒𝒓e ⋅ 𝑬(𝒓, 𝑡)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

�̂�
∗
int,dip

]Φ(𝒓e, 𝑡).

Now the electric-dipole interaction Hamiltonian is in the known form of

�̂�
∗
int,dip(𝒓, 𝑡) = −𝒅 ⋅ 𝑬(𝒓, 𝑡), (3.4)

with 𝒅 = 𝑒𝒓e as the atomic dipole moment. The two forms �̂�∗int,dip (Eq. 3.4) and �̂�int,dip (Eq. 3.3) are
equivalent, provided that both the original and the transformed wave functions are exact solutions to
the Schrödinger equation. For ground-state atoms, it turns out to be a good description to consider the
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atom having multipoles of different order interacting with the electric field. Therefore, the expansion
of the charge distribution in dipole, quadrupole and higher order poles can be used [117].

The interaction Hamiltonian �̂�
∗
int,dip = −𝒅 ⋅ 𝑬(𝒓, 𝑡) can be related to a dynamic polarizability 𝛼(𝜔)

using the Kramers-Heisenberg formula [109, 118]. The frequency-dependence of 𝛼(𝜔) arises from
the time-varying electric field, and explains the naming as dynamic or AC polarizability. Figure 3.2
shows the dynamic polarizability from Ref. [79] for the ground state 5𝑆1/2 in rubidium-87. The
trapping potential arising from the polarizability is given by [112]

𝑈(𝒓) = −𝛼(𝜔)𝜔2∣𝑨(𝒓)∣2 = −1
2
𝛼(𝜔) ⟨∣𝑬(𝒓, 𝑡)∣2⟩

𝑡
, (3.5)

with the time average of the square of the driving electric field over one oscillation period. The positive
ground state polarizability in Fig. 3.2 in the near-infrared wavelength range (here 𝜆 > 795 nm) creates
an attractive trapping potential for ground-state atoms. The dipole trap potential is proportional to 1/Δ,
whereas the scattering rate scales as 1/Δ2 with the detuning Δ [112]. Therefore, one typically tries to
be far detuned, which, although requiring higher laser power, reduces dephasing and heating of the
atoms.

In contrast to the ground state, the size of the electron wave function for highly excited Rydberg
states can become similar to the laser field wavelength. Figure 3.1(a) visualizes the size difference
between states with low and high principal quantum numbers 𝑛 with respect to a standing wave
trapping potential having wavelength 𝜆 = 1012 nm. The highlighted most probable electron radius
gives an intuitive picture of the “size” of the Rydberg atom. For Rydberg state 45𝑆, 𝒓e ∼ 160 nm and,
with 𝒌 ⋅ 𝒓e ∼ 1, the dipole approximation becomes invalid. Figure 3.1(b) shows the Rydberg electron
radial wave function in comparison to a standing wave intensity distribution. To keep our derivation
of trapping potentials applicable for both ground state and high Rydberg states, we do not apply the
dipole approximation to the minimal-coupling Hamiltonian in Eq. 3.2.

Far off-resonance, the interaction of high-lying Rydberg states with near-infrared lasers gives rise to
a negative polarizability [51]. The value approaches the free-electron polarizability 𝛼 𝑓 = −𝑒2/𝑚e𝜔

2

shown in Fig. 3.2 for high principal quantum numbers. This corresponds to the so-called ponderomotive
energy shift: although the electric field oscillates with zero time average, the electron undergoes
rapid quiver motion, storing kinetic energy on average [119]. This time-averaged energy is the
ponderomotive energy. The almost-free electron in Rydberg states experiences this ponderomotive
energy shift, and due to the negative sign of the free-electron polarizability, the entire Rydberg atom
is repelled by high-intensity laser fields. Therefore, it is common to turn off the dipole trap during
experiments to prevent the Rydberg atom from being lost due to this repulsion [49].

The repulsion caused by the ponderomotive energy shift can be mitigated by using a near-resonant
trapping field. The focus in this thesis is on the near-resonant coupling between the 6𝑃 state and
high-lying Rydberg states, which is represented by the middle dashed line in Fig. 3.2. At a wavelength
of 1012 nm, lasers with output power in the range of watts are commercially available. The remainder
of this chapter is dedicated to calculating the energy shift of these Rydberg states due to this coupling.

3.1.2 AC Stark Shift Calculation with Floquet Theory

To calculate the potential without the dipole approximation, we return to Eq. 3.2 and find time-
dependent solutions with Floquet theory. The Hamiltonian is in the form of the hydrogen-like
Hamiltonian �̂�0 with the terms �̂�1,2(𝑡) treated as time-dependent perturbations. The eigenstates Ψ(0)𝑛
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Figure 3.2: Dynamic polarizability for the 5𝑆1/2 ground state (red, solid) in rubidium-87 as a function of laser
wavelength. The transition wavelengths from the Rydberg state 90𝑆1/2 to the lower-lying 5𝑃3/2, 6𝑃3/2 and 7𝑃3/2
states are indicated by the blue dashed vertical lines. The solid light blue line is the free-electron polarizability
𝛼 𝑓 = −𝑒2/𝑚e𝜔

2.

and eigenenergies 𝐸(0)𝑛 of the unperturbed �̂�0 are known [120]. They are solutions to the equation

�̂�0Ψ
(0) = ( �̂�2

e
2𝑚e
+𝑉c(𝒓e))Ψ(0) = 𝐸(0)Ψ(0) (3.6)

The core potential 𝑉c(𝒓e) is derived from model potentials with the corresponding quantum defects
for rubidium [51, 121]. This holds in the single active electron approximation, that can be applied for
both the ground and Rydberg states. The terms �̂�1(𝑡) and �̂�2(𝑡) are small perturbations and give rise
to the energy shift arising from the external laser field. Then, one seeks a solution of the Schrödinger
equation of the perturbed Hamiltonian

𝑖ℎ̵
𝜕Ψ

𝜕𝑡
= [�̂�0 + �̂�1(𝑡) + �̂�2(𝑡)]Ψ (3.7)

The laser field is periodic in time, which makes the two perturbations periodic in time. In other words,
the time dependence of the vector potential 𝑨(𝒓 + 𝒓e, 𝑡) requires time-dependent perturbation theory
to solve the Schrödinger equation. We use the Floquet quasi-energy approach to find the energy
corrections [122, 123].

In the following, a recipe for applying the Floquet quasi-energy approach to a time-dependent
perturbation problem is given. The recipe summarizes the calculation given in Ref. [115, p. 22]. More
details on the calculation can also be found in Ref. [114]. First, the solutions for a time-independent
perturbation are stated. These energy corrections are extended in the Floquet approach to include the
time dependence. The total energy correction for state 𝑞 arising from a perturbation Hamiltonian �̂� is
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given in Ref. [124, p. 130, 131] as

𝛿𝐸𝑞 = 𝐸
(1)
𝑞 + 𝐸(2)𝑞 ,

= ⟨𝑞∣�̂�∣𝑞⟩ +∑
𝑗≠𝑞

∣ ⟨𝑞∣�̂�∣ 𝑗⟩∣2

𝐸
(0)
𝑞 − 𝐸(0)𝑗

.

Next, the energy corrections from the time-dependent perturbation �̂�(𝑡) are calculated. For this
purpose, the unperturbed energies 𝐸(0)𝑞 for state 𝑞 are replaced with the quasi-energies 𝐸(0)𝑞 +𝑚ℎ̵𝜔,
where 𝑚 is an integer. The dipole matrix elements are not only integrated over space, but also averaged
over one oscillation period 𝑇 = 2𝜋/𝜔. The energy corrections are finally derived as

𝐸
(1)
𝑞 =∑

𝑚
∫

2𝜋
𝜔

0
⟨𝑞∣�̂�𝑚(𝑡)∣𝑞⟩ 𝑑𝑡, (3.8)

𝐸
(2)
𝑞 = ∑

𝑗≠𝑞,𝑚
∫

2𝜋
𝜔

0

∣ ⟨𝑞∣�̂�𝑚(𝑡)∣ 𝑗⟩∣
2

𝐸
(0)
𝑞 − 𝐸(0)𝑗 −𝑚ℎ̵𝜔

𝑑𝑡, (3.9)

where the time dependent Hamiltonian �̂�(𝑡) is decomposed into Fourier components �̂�𝑚(𝑡) and the
trapping laser has frequency𝜔. For an external field from a trapping laser, the perturbation Hamiltonian
is periodic in time 𝑇 = 2𝜋/𝜔. According to the quasi-energy method [122, p. 331], the periodicity is
decomposed into oscillation components exp(𝑖𝑚𝜔𝑡) with integer multiple 𝑚 = 0,±1,±2, . . . .

This recipe can now be applied to calculate the energy corrections arising from a trap laser field.

3.1.3 Energy Corrections

In this section, we calculate the two energy corrections arising from the 𝑨(𝒓+𝒓e, 𝑡)⋅ �̂�e and 𝑨2(𝒓+𝒓e, 𝑡)
term, respectively.

We first calculate the energy correction 𝑈
(1)
q (𝒓) due to the time-dependent perturbation Hamilto-

nian �̂�1(𝑡). The Hamiltonian is of the form 𝑨(𝒓 + 𝒓e, 𝑡) ⋅ �̂�e. The energy correction from Eq. 3.8 is
equal to zero for this Hamiltonian, as the vector potential 𝑨(𝒓 + 𝒓e, 𝑡) averages out over one oscillation
period.

To calculate the second order energy correction, the vector potential 𝑨(𝒓 + 𝒓e, 𝑡) can be expanded
as a series with factors of exp(𝑖𝑚𝜔𝑡). The 𝑚 = ±1 components, exp(𝑖𝜔𝑡) + exp(−𝑖𝜔𝑡), describe our
sinusoidal laser field exactly and no other orders have to be considered. The Hamiltonian reduces to

�̂�1(𝑡) =
𝑒𝑨(𝒓 + 𝒓e) ⋅ �̂�e

𝑚e𝑐
𝑒
𝑖𝜔𝑡 + 𝑒𝑨∗(𝒓 + 𝒓e) ⋅ �̂�e

𝑚e𝑐
𝑒
−𝑖𝜔𝑡

. (3.10)

With Eq. 3.9, this Hamiltonian results in an energy correction for state 𝑞 given by

𝑈
(1)
𝑞 (𝒓) ≈

𝑒
2

𝑚
2
e
∑
𝑗≠𝑞

1
ℎ̵
(∣ ⟨𝑞∣𝑨(𝒓 + 𝒓e) ⋅ 𝒑e∣ 𝑗⟩ ∣2

𝜔𝑞 𝑗 −𝜔
+ ∣ ⟨𝑞∣𝑨

∗(𝒓 + 𝒓e) ⋅ 𝒑e∣ 𝑗⟩ ∣2

𝜔𝑞 𝑗 +𝜔
) . (3.11)

Here, the matrix elements evaluate the electron wave function overlap of the two atomic states ∣𝑞⟩ and
∣ 𝑗⟩ with respect to the spatially varying vector potential. In order to simplify these matrix elements,
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the vector potential can be expanded as a Taylor series for a small electron radius 𝒓e [125] as

𝑨(𝒓 + 𝒓e) = 𝑨(𝒓) + 𝒓e ⋅∇𝒓 𝑨(𝒓) +
1
2∑𝑖, 𝑗

𝑟𝑖𝑟 𝑗
𝜕

2𝑨

𝜕𝑟𝑖𝜕𝑟 𝑗
(𝒓) + . . . (3.12)

With this expansion, the expectation values are expressed in terms of the wave function overlap
between the two states 𝑞 and 𝑗 as

⟨𝑞∣𝑨(𝒓 + 𝒓e) ⋅ �̂�e∣ 𝑗⟩ = ∫ Ψ
∗
𝑞(𝒓)𝑨(𝒓 + 𝒓e) ⋅ �̂�eΨ 𝑗(𝒓) 𝑑𝒓

= ∫ Ψ
∗
𝑞(𝒓)𝑨(𝒓) ⋅ �̂�eΨ 𝑗(𝒓) 𝑑𝒓

+ ∫ Ψ
∗
𝑞(𝒓)(𝒓e ⋅∇𝒓 𝑨(𝒓)) ⋅ �̂�eΨ 𝑗(𝒓) 𝑑𝒓

+ . . .

In these terms, the contribution of the vector potential is evaluated on the scale of the two involved
wave functions Ψ𝑞 and Ψ 𝑗 . The sum in Eq. 3.11 has to be calculated by considering all possible states.

Figure 3.3(a), (b) and (c) depict the expansion of the vector potential and the respective matrix
element for low- and high-lying atomic states. This visualization is meant to give the reader a size
comparison of the involved wave functions and optical wavelength.

For the ground state in Fig. 3.3(a), the wave function sizes are much smaller than the laser wavelength.
The vector potential is evaluated in a small range and is in the dipole approximation independent of
the electron position.

Rydberg states, that are larger than the ground state, would sample the variation of the vector
potential. The overlap in Fig. 3.3(b) between Rydberg states (large electron wave function) and
low-lying states (small electron wave function) is still small, because the smaller wave function
determines the relevant spatial volume. For this reason, the dipole approximation can also be applied
for optical excitations into Rydberg states. The higher order terms depicted by the gradient and
curvature are negligible, because of the vanishing variation of the vector potential in the overlap
region.

The vector potential variation in the overlap between two Rydberg state in Fig. 3.3(c) is not vanishing.
However, the transition frequency between Rydberg states lies in the microwave range [22] and the
denominator in Eq. 3.11 suppresses these contributions. Figure 3.3(d) shows the binding energy of
atomic states in rubidium-87, as well as the energy carried by a single photon with a wavelength of
1012 nm.

With these arguments, it is sufficient to consider the first term in Eq. 3.12. The energy correction
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Chapter 3 Trapping Potentials for Magic Trapping of Ground and Rydberg States

Figure 3.3: (a), (b) and (c) Symbolic representation of matrix elements with a wave function overlap across the
vector potential 𝑨(𝒓 + 𝒓e). The bra and ket states are atomic states. The dots represent the wave function of
low-lying states and the large circles the ones of Rydberg states. (a) For two low-lying states, the field does
not vary over either of the two electron wave functions and the dipole approximation is valid. (b) The vector
potential is expanded into a constant, a gradient and a curvature contribution according to Eq. 3.12. The small
black dot in the vector potential depictions shows the size of the smaller of the two involved wave function with
respect to the wavelength. (c) The overlap calculation between two Rydberg states. (d) Binding energy of 𝑛𝑆
and 𝑛𝑃 levels in rubidium-87 (gray horizontal lines). The vertical black arrows have a length on the energy scale
corresponding to the trap laser wavelength of ∼ 1012 nm. The black vertical lines mark the energies reached
from the states 5𝑆 and 90𝑆 respectively by coupling with one trap photon. For the 5𝑆 ground state, the main
contribution to the sum in Eq. 3.24 is from the 5𝑃 states. The trap wavelength is chosen such that the example
Rydberg state 90𝑆 is coupled to the low-lying 6𝑃 state.

can therefore be simplified to

𝑈
(1)
𝑞 (𝒓) =

𝑒
2

ℎ̵𝑚
2
e
∑
𝑗≠𝑞

⎛
⎝
∣⟨𝑞∣𝑨(𝒓) ⋅ 𝒑e∣ 𝑗⟩∣2

𝜔𝑞 𝑗 −𝜔
+
∣⟨𝑞∣𝑨∗(𝒓) ⋅ 𝒑e∣ 𝑗⟩∣

2

𝜔𝑞 𝑗 +𝜔
⎞
⎠

+ 𝑒
2

ℎ̵𝑚
2
e
∑
𝑗≠𝑞

⎛
⎝
∣⟨𝑞∣(∇𝒓 𝑨(𝒓) ⋅ 𝒓e) ⋅ 𝒑e∣ 𝑗⟩∣2

𝜔𝑞 𝑗 −𝜔
+
∣⟨𝑞∣(∇𝒓 𝑨

∗(𝒓) ⋅ 𝒓e) ⋅ 𝒑e∣ 𝑗⟩∣
2

𝜔𝑞 𝑗 +𝜔
⎞
⎠
+ . . .

≈ 𝑒
2

ℎ̵𝑚
2
e
∑
𝑗≠𝑞

⎛
⎝
∣⟨𝑞∣𝑨(𝒓) ⋅ 𝒑e∣ 𝑗⟩∣2

𝜔𝑞 𝑗 −𝜔
+
∣⟨𝑞∣𝑨∗(𝒓) ⋅ 𝒑e∣ 𝑗⟩∣

2

𝜔𝑞 𝑗 +𝜔
⎞
⎠
. (3.13)

Together with 𝑨(𝒓) = 𝝐𝐴(𝒓) and the commutation identity of the hydrogen atom [126] ⟨𝑟 ∣𝝐 ⋅ 𝒑e∣ 𝑗⟩ =
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𝑖𝑚e𝜔𝑟 𝑗 ⟨𝑟 ∣𝑒 𝝐 ⋅ 𝒓𝑒∣ 𝑗⟩, one can write the energy correction in the first term of the series expansion as

𝑈
(1)
𝑞 (𝒓) = − ∣𝑨(𝒓)∣2𝜔2

⎡⎢⎢⎢⎢⎣
−∑

𝑗≠𝑞

𝜔
2
𝑞 𝑗

𝜔
2
⎛
⎝
∣⟨𝑞∣𝑒𝝐 ⋅ 𝒓e∣ 𝑗⟩∣2

ℎ̵(𝜔𝑞 𝑗 −𝜔)
+
∣⟨𝑞∣𝑒𝝐∗ ⋅ 𝒓e∣ 𝑗⟩∣

2

ℎ̵(𝜔𝑞 𝑗 +𝜔)
⎞
⎠

⎤⎥⎥⎥⎥⎦
(3.14)

This equation will be evaluated for the ground and Rydberg states in the following section.
Next, we evaluate the energy correction for the perturbation Hamiltonian �̂�2(𝑡) ∝ 𝑨2(𝒓 + 𝒓e, 𝑡)

expressed in Floquet modes with the derived energy correction𝑈(2)𝑞 (𝒓) for time-dependent perturbation
in Eq. 3.8 and 3.9. In contrast to the 𝑨(𝒓 + 𝒓e, 𝑡) ⋅ �̂�e term, the first-order perturbation does not vanish.
Furthermore, we consider only the first order as it is already proportional to 𝑨2(𝒓), which is also the
case for the contribution from the 𝑨(𝒓 + 𝒓e, 𝑡) ⋅ �̂�e term in Eq. 3.14. With the first-order perturbation,
the energy correction 𝑈

(2)
𝑞 (𝒓) is given by

𝑈
(2)
𝑞 (𝒓) ≈

𝑒
2

2𝑚e
⟨𝑞∣2𝑨(𝒓 + 𝒓e)𝑨∗(𝒓 + 𝒓e)∣𝑞⟩

= −𝛼 𝑓𝜔
2 ⟨𝑞∣𝑨(𝒓 + 𝒓e)𝑨∗(𝒓 + 𝒓e)∣𝑞⟩ , (3.15)

where 𝛼 𝑓 = −𝑒2/𝑚e𝜔
2 is the free-electron polarizability. The expectation value has to be evaluated

for the wave function of the respective state 𝑞. For both the ground and the Rydberg state, the
energy correction in Eq. 3.15 is proportional to the free-electron polarizability. It has to be noted that
the free-electron polarizability 𝛼 𝑓 is generally associated with the almost-free electron in Rydberg
atoms [50]. The free-electron polarizability has a non-negligible contribution for the ground state due
to our specific gauge choice. Nevertheless, the total value of the ground state polarizability is the same
independent of the gauge choice. In Appendix A, we reformulate our result of the polarizabilities in
Eq. 3.14 and Eq. 3.15 to a single sum over coupled states, as it is often given in the literature [59,
112, 113, 127]. To calculate how much the free-electron polarizability contributes to the total energy
correction of the ground and the Rydberg state respectively, one has to consider the exact shape of the
vector potential 𝑨(𝒓 + 𝒓e) in Eq. 3.15.

3.2 Running- and Standing-Wave Traps

In this section, the vector potentials for the running- and standing-wave trap, as realized in the
experiment, are given. Afterward, the vector potentials are used to calculate the trapping potentials for
atoms in the ground and Rydberg states. This theoretical chapter concludes with a general discussion
about trapping potential dependence on the principal quantum number 𝑛.

3.2.1 Explicit Vector Potential

The derivations in Section 3.1.3 were for a general vector potential 𝑨(𝒓 + 𝒓e, 𝑡). Here, we present
the vector potentials for the optical beam arrangement in the experiment. Figure 3.4 shows the
running-wave and the standing-wave trap, and their implementation in the experimental setup is later
discussed in Chapter 5. The running-wave trap is formed by a single laser beam propagating along the
𝑥 direction. A second, counter-propagating beam results in the standing-wave trapping potential.
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Figure 3.4: Optical beam arrangement for the (a) running- and (b) standing-wave trap experiments. The atoms
are trapped in a running wave, which is made by the incoming electric field amplitude 𝑬

→
. The standing wave

trap is created by a counter-propagating beam with 𝑬
←

. The derivation of the trapping potential for the ground
state 𝑈𝑔 and the Rydberg state 𝑈𝑛 is described in the rest of this chapter. The counter-propagating probe and
control light create the collective Rydberg excitations introduced in the previous chapter. Figure adapted from
Ref. [1].

The beams in the experiment are Gaussian beams, and their electric field is given by

𝑬(𝜌, 𝑥) = 𝐸0𝝐
𝑤0
𝑤(𝑥) exp( −𝜌

2

𝑤
2(𝑥)
) exp(−𝑖𝑘𝑥 − 𝑘 𝑟

2

2𝑅(𝑧) + 𝜙G(𝑧)) , (3.16)

where 𝝐 is the polarization vector, and 𝑘 = 2𝜋/𝜆 is the wave vector for wavelength 𝜆. The Gaussian
beam waist 𝑤(𝑥) is given by

𝑤(𝑥) = 𝑤0

¿
ÁÁÀ1 + ( 𝑥

𝑥R
)

2

, (3.17)

and the Rayleigh range 𝑥R is defined as

𝑥R =
𝜋𝑤

2
0

𝜆
.

For our experiment, the radius of curvature 𝑅(𝑧) and the Gouy phase 𝜙G(𝑧) can be neglected, as
the atoms reside only in the central part of the trap with positions 𝑥 much smaller than the Rayleigh
range 𝑥R.

The vector potential for the two counter propagating beams is given by

𝑨(𝒓 + 𝒓e, 𝑡) =
𝝐

𝜔
(𝐸→(𝒓) sin ((𝒓 + 𝒓e) ⋅ 𝒌 −𝜔𝑡)

−𝐸←(𝒓) sin ((𝒓 + 𝒓e) ⋅ 𝒌 +𝜔𝑡)), (3.18)

where the arrows denote the in-coming (→) and the retro-reflected (←) beam. The resulting electric
field in the Coulomb gauge is defined as 𝑬(𝒓, 𝑡) = −𝜕𝑨(𝒓, 𝑡)/𝜕𝑡 and given by

𝑬(𝒓 + 𝒓e, 𝑡) = 𝝐(𝐸→(𝒓) cos ((𝒓 + 𝒓e) ⋅ 𝒌 −𝜔𝑡)

+𝐸←(𝒓) cos ((𝒓 + 𝒓e) ⋅ 𝒌 +𝜔𝑡)), (3.19)

where 𝒌 = 𝑘𝒆𝑥 is the wave vector of the trap laser propagating along the 𝑥-axis. In our experiments,
the electric field amplitudes do not vary over the size of the Rydberg atom, and we set 𝐸→(←)(𝒓 + 𝒓e) ≈
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𝐸→(←)(𝒓). The electric field amplitudes are Gaussian envelopes defined as

𝐸→(←)(𝒓) = 𝐸→(←)(𝜌, 𝑥) = 𝐸0,→(←)
𝑤0
𝑤(𝑥) exp (−𝜌2/𝑤2(𝑥)) . (3.20)

The two electric field amplitudes 𝐸→(←)(𝒓) are denoted with the arrows for the in-coming (→) and
the retro-reflected (←) beam. The positions are expressed in cylindrical coordinates with radius 𝜌 and
axial position 𝑥, as the further analysis will focus on the radial and axial trapping beam shapes.

We express the vector potential as a time-dependent and a time-independent part to solve the
time-dependent perturbation theory with the Floquet quasi-energy approach from Section 3.1.2. The
vector potential in Eq. 3.18 can be written as

𝑨(𝒓 + 𝒓e, 𝑡) = 𝑨(𝒓 + 𝒓e)𝑒−𝑖𝜔𝑡 + 𝑨∗(𝒓 + 𝒓e)𝑒𝑖𝜔𝑡
,

with the time-independent vector potential

𝑨(𝒓 + 𝒓e) = 𝝐 (
(𝐸→(𝒓) − 𝐸←(𝒓))

2𝜔
sin (𝒌(𝒓 + 𝒓e)) −

𝑖(𝐸→(𝒓) + 𝐸←(𝒓))
2𝜔

cos (𝒌(𝒓 + 𝒓e))) . (3.21)

It follows, that the squared time-independent vector potential is given by

4𝜔2∣𝑨(𝒓 + 𝒓e)∣2 =𝐸→(𝒓)2 + 𝐸←(𝒓)2 + 2𝐸→(𝒓)𝐸←(𝒓) cos(2𝒌𝒓e) cos(2𝒌𝒓)
− 4𝐸→(𝒓)𝐸←(𝒓) sin(2𝒌𝒓e) sin (𝒌𝒓) cos (𝒌𝒓). (3.22)

This squared vector potential can be used to evaluate the light shift calculated in the previous section
(Eq. 3.14 and Eq. 3.15) as well as the well-known AC Stark shift in Eq. 3.5.

3.2.2 Trapping Potentials for the Ground and the Rydberg State

To calculate the energy shift for the ground state, we set ∣𝑞⟩ = ∣𝑔⟩ in Eq. 3.14 and 3.15. Furthermore,
the ground state allows us to apply the dipole approximation with 𝑘𝑥e ≪ 1.

The energy shift for the ground state𝑈(1)𝑔 (𝒓) and𝑈(2)𝑔 (𝒓), from the 𝑨(𝒓+ 𝒓e, 𝑡) ⋅ �̂�e and 𝑨2(𝒓+ 𝒓e, 𝑡)
term respectively, can be written as

𝑈
(1)
𝑔 (𝒓) = −∣𝑨(𝒓)∣2𝜔2 ⋅

⎡⎢⎢⎢⎢⎣
−∑

𝑗≠𝑔

𝜔
2
𝑔 𝑗

𝜔
2

1
ℎ̵

⎛
⎝
∣ ⟨𝑔∣𝑒 𝝐 ⋅ 𝒓e∣ 𝑗⟩∣2

𝜔𝑔 𝑗 −𝜔
+
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⎠
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´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dynamic polarizability 𝛼
(1)
𝑔 (𝜔)

(3.23)

𝑈
(2)
𝑔 (𝒓) ≈ −𝛼 𝑓𝜔

2 ⟨𝑔∣𝑨(𝒓)𝑨∗(𝒓)∣𝑔⟩
= −𝛼 𝑓𝜔

2∣𝑨(𝒓)∣2. (3.24)

The sum over all contributing states in𝑈(1)𝑔 (𝒓) can be combined in the dynamic polarizability 𝛼
(1)
𝑔 (𝜔).

It has to be noted, that this is not the total dynamic polarizability of the ground-state atom. There is an
additional contribution from the 𝑨2(𝒓 + 𝒓e, 𝑡) term. The expectation value in Eq. 3.15 is simplified in
the dipole approximation and the squared vector potential in Eq. 3.24 is independent of the electron
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position.
From the two contributions above, the total energy shift of the ground state is given by

𝑈𝑔(𝒓) =𝑈
(1)
𝑔 (𝒓) +𝑈(2)𝑔 (𝒓)

= −[𝛼(1)𝑔 (𝜔) + 𝛼 𝑓 (𝜔)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

𝛼𝑔(𝜔)

]𝜔2∣𝑨(𝒓)∣2.

The energy shift is proportional to the dynamic polarizability of the ground-state atom 𝛼𝑔(𝜔)
as discussed in Section 3.1.1. The dynamic polarizability of the ground-state atom 𝛼𝑔(𝜔) has a
contribution from the free-electron polarizability as discussed in Section 3.1.3 and Appendix A.

To write the energy shift for the running and standing wave configuration, we use the explicit vector
potential 𝑨(𝒓 + 𝒓e) given in Eq. 3.22 with 𝒓e ≈ 0. The potentials can be separated into the axially
periodic potential 𝑈∼𝑔(𝒓), labeled with ∼, and the axially nonperiodic potential 𝑈−𝑔 (𝒓), labeled with –.
For the ground state, the trapping potential is given by

𝑈𝑔(𝒓) ≈𝑈∼𝑔(𝒓) +𝑈−𝑔 (𝒓), (3.25)

𝑈
∼
𝑔(𝒓) = −𝛼𝑔(𝜔)𝐸→(𝒓)𝐸←(𝒓) cos2(𝑘𝑥), (3.26)

𝑈
−
𝑔 (𝒓) = −

𝛼𝑔(𝜔)
4
(𝐸→(𝒓) − 𝐸←(𝒓))

2
. (3.27)

The periodic potential 𝑈∼𝑔(𝒓) is characterized by the cosine-squared modulation along the propagation
axis as typical for standing-wave lattices. To understand the dynamics of the ground-state atoms in
Eq. 3.26, each standing-wave potential well can be treated in a harmonic approximation as [128]

𝑉ax =
1
2
𝛽𝑥

2
,

where 𝛽 is the harmonic spring constant. The motion of the atoms is characterized by the axial
trapping frequency 𝜈ax, which is derived from the spring constant as

𝜈ax =
1

2𝜋

√
𝛽

𝑚Rb
=
¿
ÁÁÀ 2𝑈∼0

𝑚Rb𝜆
2 , (3.28)

where 𝑚Rb is the mass of one rubidium atom, 𝑈∼0 = 𝛼𝑔(𝜔)𝐸→(0)𝐸←(0) is the center trap depth in
the periodic potential, and 𝜆 is the trap laser wavelength. An imbalance between the incoming and
retro-reflected beam powers leads to the nonperiodic potential 𝑈−𝑔 (𝒓).

To calculate the energy shift of the Rydberg state, we set ∣𝑞⟩ = ∣𝑛⟩ in Eq. 3.14 and Eq. 3.15. Here, 𝑛
specifies the Rydberg state principal quantum number. The trap laser wavelength can be tuned close to
an atomic resonance as discussed in Section 3.1.1. In our experiment, we consider a near-resonant trap
between a Rydberg state ∣𝑛⟩ and the state ∣𝑎⟩ = ∣6𝑃3/2⟩ in rubidium-87. The transition frequency 𝜔𝑎𝑛

depends on the specific Rydberg state. The contribution from the 6𝑃3/2 state in the sum of Eq. 3.14 is
larger by three orders of magnitude compared to all other sum parts combined. For our experiment
𝜔𝑎𝑛+𝜔≫ 𝜔𝑎𝑛−𝜔, the rotating-wave approximation is therefore valid and only the term with 𝜔𝑎𝑛−𝜔
in Equation 3.14 has to be considered. The energy correction 𝑈

(1)
𝑛 (𝒓) of the Rydberg state can be
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simplified to

𝑈
(1)
𝑛 (𝒓) ≈ ∣𝑨(𝒓)∣2

𝜔
2
𝑎𝑛

ℎ̵

∣ ⟨𝑛∣𝑒 𝝐 ⋅ 𝒓e∣𝑎⟩∣2

𝜔𝑎𝑛 −𝜔
,

≈ −𝜔2∣𝑨(𝒓)∣2 ∣ ⟨𝑛∣𝑒 𝝐 ⋅ 𝒓e∣𝑎⟩∣2

ℎ̵Δ
.

Here, we defined the detuning Δ = 𝜔 − 𝜔𝑎𝑛 and set 𝜔2
𝑎𝑛 ≈ 𝜔

2. For our trap laser with circular
polarization 𝝐 , the dipole matrix element is given in terms of the reduced dipole matrix element 𝐷𝑎𝑛

by

∣ ⟨𝑛∣𝑒 𝝐 ⋅ 𝒓e∣𝑎⟩∣2 = ∣⟨𝑛∣
𝑒√
2
(𝒆𝑥 + 𝑖𝒆𝑦) ⋅ 𝒓e∣𝑎⟩∣

2

=∶ 1
2
∣1
2
⟨𝑛𝑆1/2, 𝐽 = 1/2∣∣𝑑∣∣6𝑃3/2, 𝐽 = 3/2⟩∣

2

=∶ 1
8
𝐷

2
𝑎𝑛,

with the unit vectors 𝒆𝑥 and 𝒆𝑦 . The reduced dipole matrix element 𝐷𝑎𝑛 = ⟨𝑎∣∣𝑒𝒓e∣∣𝑛⟩ are evaluated
with the ARC python package [79]. The resulting energy shift for the Rydberg state from the
Hamiltonian �̂�1(𝑡) is given by

𝑈
(1)
𝑛 (𝒓) ≈ −

𝐷
2
𝑎𝑛

8ℎ̵Δ
𝜔

2∣𝑨(𝒓)∣2. (3.29)

For a linearly polarized trap, as in Ref. [60], the energy shift has a prefactor of 1/12 instead of 1/8 due
to different angular parts in the dipole matrix elements ⟨𝑛∣𝑒 𝝐 ⋅ 𝒓e∣𝑎⟩.

The energy shift from the 𝑨2(𝒓 + 𝒓e, 𝑡) term in Eq. 3.15 can be calculated with the explicit vector
potential in Eq. 3.22 as

𝑈
(2)
𝑛 (𝒓) ≈ −

𝛼 𝑓

4
[4𝐸→(𝒓)𝐸←(𝒓) cos2(𝑘𝑥) ⟨𝑛∣cos(2𝑘𝑥e)∣𝑛⟩

− 2𝐸→(𝒓)𝐸←(𝒓) sin(2𝑘𝑥) ⟨𝑛∣sin(2𝑘𝑥e)∣𝑛⟩
+ 2𝐸→(𝒓)𝐸←(𝒓) [1 − ⟨𝑛∣cos(2𝑘𝑥e)∣𝑛⟩]

+ (𝐸→(𝒓) − 𝐸←(𝒓))
2
]

The expectation value ⟨𝑛∣sin(2𝑘𝑥e)∣𝑛⟩ vanishes, because the sine function is an odd function. To
describe the spatial variance of the wave functions compared to the optical wavelength sketched in
Fig. 3.1(b), the landscape factor 𝜃𝑛 = ⟨𝑛∣cos(2𝑘𝑥e)∣𝑛⟩ [51, 60] can be introduced. The energy shift is
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simplified to

𝑈
(2)
𝑛 (𝒓) = −

𝛼 𝑓

4
[4𝐸→(𝒓)𝐸←(𝒓) cos2(𝑘𝑥)𝜃𝑛
+ 2𝐸→(𝒓)𝐸←(𝒓) [1 − 𝜃𝑛]

+ (𝐸→(𝒓) − 𝐸←(𝒓))
2
].

This potential has a similar cosine-squared modulation as in the periodic potential for the ground
state 𝑈∼𝑔(𝒓) in Eq. 3.26.

In the landscape factor 𝜃𝑛, the size of the Rydberg electron wave function, hidden in ∣𝑛⟩, is compared
to the cosine-shaped modulation of the standing wave trap. The landscape factor 𝜃𝑛 can be calculated
by expanding the cosine in terms of spherical Bessel functions. It follows that the landscape factor is
given by [58]

𝜃𝑛 = ⟨𝑛𝑆∣cos(2𝑘𝑥e)∣𝑛𝑆⟩ = ∫
∞

0
𝑑𝑥e(𝑅𝑛(𝑥e) ⋅ 𝑥e)2 𝑗0(2𝑘𝑥e), (3.30)

where 𝑅𝑛(𝑥e) is the radial electron wave function in Rydberg state 𝑛𝑆, and 𝑗0(2𝑘𝑥e) is the spherical
Bessel function of the first kind for zero angular momentum [60].

Figure 3.5(a) and 3.5(b) show the size of different Rydberg electron radial wave functions in
comparison to a cosine-squared intensity distribution. For a direct comparison, the Bessel function
for the respective laser wavelength is presented in Fig. 3.5(c). The extent of the wave function in
Fig. 3.5(a) increases quickly with principal quantum number, with the Rydberg electron radius scaling
𝑟e ∝ (𝑛∗)2 given in Table 2.1. The variation in Rydberg state energy with 𝑛 is so small compared to
the energy of the ∣𝑎⟩ to ∣𝑛⟩ transition that the laser wavelength almost does not change, as shown in
Fig. 3.5(b). These scalings lead to an increased sampling of the Rydberg electron of the potential
landscape with higher principal quantum number [58]. Fig. 3.5(d) shows the change of the landscape
factor over a range of principal quantum numbers. The electron of a ground-state atom explores only
a small spatial region and therefore, the landscape factor is close to 1. For higher Rydberg state,
the electron effectively samples several lattice sites and the effect of the periodic intensity variation
averages out to 𝜃𝑛 = 0.

The total energy shift of the Rydberg state is then

𝑈𝑛(𝒓) ≈𝑈
(1)
𝑛 (𝒓) +𝑈(2)𝑛 (𝒓)

= −𝐷
2
𝑎𝑛

8ℎ̵Δ
𝜔

2∣𝑨(𝒓)∣2 +𝑈(2)𝑛 (𝒓).

As for the ground state, the Rydberg state potentials can be written as a periodic and nonperiodic part
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Figure 3.5: (a) Normalized radial wave function of the Rydberg electron in states ∣20𝑆⟩, ∣45𝑆⟩, and ∣90𝑆⟩.
(b) The cos2 intensity distribution for a laser with the wavelength required to couple the respective Rydberg state
and the lower-lying state ∣6𝑃3/2⟩. (c) Bessel function of the first kind as it is used to calculate the landscape
factor. (d) Landscape factor 𝜃𝑛 from Eq. 3.30 as a function of the principal quantum number 𝑛.

given by

𝑈𝑛(𝒓) =𝑈∼𝑛(𝒓) +𝑈−𝑛 (𝒓), (3.31)

𝑈
∼
𝑛(𝒓) = − 𝐸→(𝒓)𝐸←(𝒓) cos2 (𝑘𝑥)(𝐷

2
𝑎𝑛

4ℎ̵Δ
+ 𝛼 𝑓 𝜃𝑛) , (3.32)

𝑈
−
𝑛 (𝒓) = −

𝐷
2
𝑎𝑛

16ℎ̵Δ
(𝐸→(𝒓) − 𝐸←(𝒓))2

−
𝛼 𝑓

4
[2𝐸→(𝒓)𝐸←(𝒓) (1 − 𝜃𝑛)

+ (𝐸→(𝒓) − 𝐸←(𝒓))2 ]. (3.33)

It should be noted that the Rydberg state trapping potentials depend on the trap laser detuning Δ. In
contrast, the ground state potential in Eqs. 3.25-3.27 does not depend on the detuning. We use this
fact to control the potential depth difference between the ground and Rydberg states. The option to
tune the potential difference is a key component to create a magic wavelength trap.
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CHAPTER 4

Experimental Apparatus and Methods for
Rubidium Rydberg Quantum Optics

After discussing the theoretical background of trapping atoms in ground and Rydberg states, we now
turn to the experimental apparatus. In this chapter, we present an overview of the experimental setup,
that is used to prepare, characterize and conduct experiments with a cloud of rubidium-87 atoms.

4.1 Overview of Experimental Setup

Figure 4.1(a) is a photograph taken of the experiment in February 2025. The first iteration of this
experiment was built in Stuttgart and is mainly documented in the PhD thesis of H. Gorniaczyk [129].

The cloud of ultracold rubidium-87 atoms is prepared from a rubidium background gas inside the
experiment vacuum chamber, partly shown in Fig. 4.1(a). The background gas is created from a
rubidium alloy dispenser1 located in the cylindrical glass-to-metal transition of the vacuum chamber
(shown on the left in Fig. 4.1(a)). The rubidium evaporation rate is controlled by an applied current of
around 4.2 A, and an ion pump2 and a titanium sublimation unit3 are used to maintain the vacuum to
1 × 10−10 mbar.

The experiments with rubidium atoms are conducted in a quartz glass cuboid with dimensions
60 × 80 × 149 mm. The surfaces of the cuboid are coated with an anti-reflection coating (𝑅 < 1.5 %)
optimized for normal incidence at wavelengths of 780, 420, 480, 532, and 1064 nm. The cuboid
is connected to a stainless steel chamber with the cylindrical glass-to-metal transition shown in
Fig. 4.1(a), ensuring that the glass part of the vacuum system is mechanically suspended from the steel
chamber. The vacuum chamber has multiple electrical feedthroughs. The complete chamber can be
moved along the 𝑦 axis by shifting the mounting feet of the steel chamber and pulling the glass cuboid
out of the magnetic field cage along the 𝑦 axis in Fig. 4.1(a). This allows the rest of the experimental
setup to remain fixed and aligned during the displacement.

Reinserting the glass cell into the center of the experiment has proven to be reproducible, typically
requiring only minor realignment of the optical beams to resume normal operation.

1 SAES Getters; Model: RB/NF/4.8/17 FT 10+10
2 Varian VacIon Plus 40 Starcell
3 Agilent Technologies Titanium Sublimation Cartridge
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Figure 4.1: Overview of the experimental setup. (a) Photograph along the 𝑥-axis towards the cuboid-shaped
glass cell of the vacuum chamber. Inside the glass cuboid, a cloud of rubidium-87 atoms is trapped and used
for Rydberg experiments. Outside the vacuum chamber a set of coils are arranged to control magnetic fields.
Inside the vacuum chamber a set of electrodes allows manipulating the local electric field the atoms experience.
(b) Top view of the glass cell and the optical beam arrangement. The main axis is defined by the probe and
control beam. Further, beams for the trapping and cooling of atoms are separately guided into the glass cell
under different angles. See the main text for more details.

A pair of coils for controlling the magnetic field in the vacuum cell is mounted directly above and
below the cell. These coils are mounted in an anti-Helmholtz configuration, producing a quadrupole
magnetic field at the center of the cell. The quadrupole field is essential for the magneto-optical
trapping and cooling of the rubidium atoms [130].

In addition, three orthogonal pairs of coils in Helmholtz configuration are installed around the glass
cell to compensate for ambient magnetic fields. Figure 4.1(b) shows the configuration of the trapping
and cooling beams used for the magneto-optical trap, as well as other beams employed for optically
addressing the atoms.

The primary experiments described in this work are performed using a probe beam and a control
beam, both aligned along the 𝑥-axis. The probe and control beam drive the two transitions in
the EIT scheme shown in Fig. 2.1(a). Both beams are directed at normal incidence onto the
anti-reflection-coated surfaces of the glass cell.

In our experiment, the lasers are selected and configured to match the specific interactions required
with the atoms, with their wavelength, linewidth, and optical output power adjusted to the specific
application. This section outlines the laser system that was set up in the course of this thesis.

For rubidium-87, the required optical wavelengths are accessible using commercially available
diode laser systems. In our experiment, we mostly use commercial Littrow-type external cavity diode
lasers.4 For specific applications that demand high optical power, particularly in trapping and cooling,
these lasers are amplified using a tapered amplifier,5 yielding output powers in the watt range. A
frequency doubling stage6 is used to generate a laser beam at a wavelength of 480 nm that is required
to excite the Rydberg states.

Most of the lasers are used to resonantly interact with specific atomic transitions, where the transition

4 Toptica DL pro
5 Toptica TA pro
6 Toptica TA-SHG pro
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wavelengths for rubidium, between different 𝑛𝑆 and 𝑛𝑃 states used in this thesis, are well known [80,
131, 132]. In order to monitor the wavelength of our near-infrared laser, we use a wavelength meter7

with an absolute accuracy of 200 MHz. However, the linewidth for the lowest two dipole-allowed
transitions are given by their natural linewidth ΓD1 = 2𝜋 × 5.75 MHz and ΓD2 = 2𝜋 × 6.07 MHz [133].
To precisely control the interaction between the laser light and the atoms, it is necessary to stabilize
the laser frequency to a level well below the atomic natural linewidth. Most of the lasers in our setup
are therefore stabilized in their optical frequency by referencing them to a long-term stable frequency
standard.

In our lab, a high-Finesse Fabry-Perot cavity mounted in an ultra-low expansion (ULE) spacer is
used as a frequency reference. The spacer with the cavity is placed in a cavity housing8 which is
temperature stabilized and kept under vacuum. Despite the isolated conditions of the cavity on the
spacer, a linear drift of the cavity resonance at 960 nm of 20.8(6)kHz/day is observed. The drift has
been monitored over months, and compensated for by adjusting the frequency referencing to the cavity
accordingly.

To allow the stabilization of lasers with different wavelength, the stable reference cavity mirrors
are coated for high reflection in the ranges 780− 795 nm, 840 nm, 950− 970 nm, and 1010− 1020 nm.
Figure 4.2 shows a schematic of the components and techniques that were set up during this thesis.
Three lasers at the wavelengths 780 nm, 960 nm, and 1012 nm are stabilized with the Pound-Drever-
Hall technique (PDH) [134, 135] to resonances of the stable reference cavity. The generated error
signal by the PDH technique is adjusted in a proportional-integral-derivative controller (PID) and
subsequently applied to the laser diode current and piezoelectric-controlled grating. For the two lasers
at wavelength of 960 nm and 1012 nm, we installed fiber-coupled electro-optic modulators (EOM) in
the beam path towards the cavity. As the modulated sidebands can be stabilized with respect to the
cavity, one can adjust the exact frequency of the laser by changing the EOM modulation frequency.

In most of the experimental steps, from atom preparation to Rydberg experiments, the lasers with a
wavelength of 780 nm are close to the transition 5𝑆1/2 ↔ 5𝑃3/2 (D2-line) in rubidium-87. To precisely
control the laser wavelength required for a given application, multiple lasers at a wavelength of 780 nm
are stabilized in frequency relative to one reference laser. This reference laser is stabilized to the
reference cavity as indicated in Fig. 4.2. In this so-called beatnote offset lock, the beatnote between
two lasers can be compared to a computer controllable frequency 𝑓ref,beat. The frequency comparison
is converted into an error signal by using a delay line [136] or an all-digital phase detection [137], and
the feedback is adjusted in a PID controller to correct for laser frequency deviations.

A careful optimization of all these feedback loops includes the reduction of cable and optical
path length, tuning of electrical signal and optical beam powers, and choice of the PID controllers
settings. Thereby, the laser linewidth can be reduced to well below the natural linewidth of the lowest
rubidium transitions, and to a similar scale as the narrow Rydberg transitions, given by the Rydberg
state lifetimes in Section 2.2.

A detailed study of laser frequency noise and the influence of this noise on Rydberg experiments is
to be published in Ref. [138].

7 Ångstrom High Finesse WS6/200-1988
8 Stable Laser Systems, Housing model: VH6010-4
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Figure 4.2: Schematic of the laser setup providing an overview of the different techniques used to control
the frequency, and power of the laser beams used in the experiments discussed in this thesis. Lasers with
wavelengths of 780 nm, 960 nm, and 1012 nm are stabilized. The three lasers on the left are stabilized with
the Pound-Drever-Hall technique (PDH) to the stable reference cavity. The boxes labeled PDH include a
demodulation module (demodulate with 𝑓PDH) and a feedback controller. The exact frequency of the control
and the one-dimensional trap are set by the reference frequency 𝑓ref modulated onto the light with electro-optic
modulators (EOM), that defines the frequency offset with respect to a transmission resonance of the reference
cavity. The fundamental beam at 960 nm is stabilized, and another part of the beam is amplified and frequency
doubled to 480 nm to be used as control laser in the Rydberg experiments. The 780 nm laser stabilized to the
reference cavity is used as a reference to stabilize four additional lasers at 780 nm with the beatnote offset
locking technique, for which four setups as sketched in the upper right corner. As the name suggests, the
relative frequency between two lasers is detected on a photodiode (PD) and afterward stabilized with a feedback
controller to a reference frequency 𝑓ref,beat, see main text for details. Each beam, before it is sent to the
experiment, is deflected by an acousto-optic modulator (AOM), where the amplitude of the applied radio
frequency controls the amount of light coupled into an optical fiber.

4.1.1 Trapping and Cooling of Neutral Rubidium Atoms

In this section, the different experimental steps from the background gas to a cold atomic cloud are
discussed. Additionally, the method of absorption imaging is introduced and used to characterize the
atomic cloud shape and temperature.

Magneto-Optical Trap Loaded from Background Gas

A magneto-optical trap (MOT) is a widely used technique [130] for capturing, confining and cooling
atoms within a defined region inside a vacuum chamber. Figure 4.3(a) illustrates the optical and
magnetic field configuration required for a MOT. The gradient magnetic field creates a magnetic field
that increases linearly in amplitude with a vanishing field in the center. We load the MOT with a radial
and axial gradient of 8.2 G/cm and 16.3 G/cm, respectively. Thereby, the atoms experience a position
dependent Zeeman splitting [139]. Laser beams from six directions are used to reduce the atomic
momentum. The laser beams are tuned to only interact with atoms moving towards the respective
beam. Due to the Doppler shift, only atoms moving towards and not collinear with the beam are
absorbing photons. An isotropic spontaneous emission results in a net removal of momentum from
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Figure 4.3: (a) Light and magnetic fields used for a magneto-optical trap. The six laser beams are 𝜎
± polarized.

The thin lines show the orientation of the quadrupole magnetic field created by the current 𝐼 running through a
pair of coils in anti-Helmholtz configuration. (b) Atomic fluorescence as function of MOT laser operation time.
The dashed line is an exponential fit with a time constant of 4.9 s [140, 141]. (c) Fluorescence image of the
MOT. Figure (a) adapted from Ref. [142].

the respective atom. The gradient amplitude defines the spatial region in which the Zeeman shift is
large enough to enable the atomic excitation together with the Doppler shift. Adjusting the magnetic
field gradient and laser detunings allows the creation of a spatial region where atoms are effectively
confined.

Figure 4.3(b) shows the fluorescence from the trapped rubidium-87 atoms after the MOT beams
are turned on. For the experiments presented in this thesis the MOT load time was 1.3 s, which is a
trade-off between number of atoms used for later experiments and overall experiment cycle duration.

The atoms are trapped in a region of approximately 2 mm3 as shown in Fig. 4.3(c). The region
in which the atomic cloud is confined can be changed by varying the gradient field amplitude. An
increase in gradients, for us 37 G/cm and 74 G/cm, leads to a smaller distance from the gradient
center where the energy level shifts are comparable to the Doppler shifts.

Resonant Absorption Imaging

The image shown in Fig. 4.3(c) is obtained using fluorescence detection, but the atomic cloud can also
be imaged using absorption imaging [143]. In this technique, atoms scatter photons from a resonant
imaging beam, and the resulting shadow cast by the cloud is recorded on a camera. Absorption
images of the atomic ensemble are used to ensure spatial overlap with the optical beams in the vacuum
chamber and to extract information about the temperature of the atomic cloud.

Figure 4.4(a) shows the setup to record images of the atom cloud in two different directions. The
horizontal system images the 𝑥-𝑦 plane and the vertical system images the 𝑥-𝑧 plane. In each direction,
a collimated beam on resonance with the D2-line (780 nm) is sent onto the rubidium cloud. The plane
of the atomic cloud is imaged onto a CCD camera9 with a telescope. For one absorption image, three
separate images are captured.

9 PCO; Model: pco.pixelfly USB digital 14 bit CCD camera; sensor: ICX285AL
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Figure 4.4: (a) Setup to record absorption images of the atomic cloud from two different directions. (b) Three
images from the horizontal direction as they are used to calculate the final absorption image. The shadow and
bright image are recorded with and without atoms in the imaging beam path. The dark background image is
measured without the imaging beam. (c) Image size calibration in the vertical imaging. The atomic cloud falls
under gravity. The cloud center-of-mass displacement 𝑧 as a function of time of flight duration 𝑡tof is fit with
Eq. 4.2 (dashed line). (d) Image size calibration in horizontal imaging. A magnetically trapped atomic cloud is
shifted for six different bias magnetic fields along the 𝑥-axis. The vertical size calibration is transferred to the
horizontal direction by the common shift. (e) Atomic cloud width 𝜎𝑖 , for axis 𝑖 in the horizontal imaging, and
theoretical thermal expansion (dashed, Eq. 4.3) as function of 𝑡tof after releasing from the crossed dipole trap.

Figure 4.4(b) shows example images with and without atoms, as well as a background image. From
these, we calculate an optical column density for each pixel as

OD = − ln(
𝐼shadow − 𝐼bg

𝐼bright − 𝐼bg
) . (4.1)

Here, 𝐼 refers to the pixel data recorded with atoms (shadow), without atoms (bright), and the
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background image (bg), respectively. The absorption images allow us to investigate the atomic density
distribution at any point in the experiment cycle. It is an undesirable side effect of this type of analysis
that the absorption imaging is a destructive measurement. No Rydberg experiments can be performed
afterward imaging.

The image size of the atomic cloud on the camera chip is given by the magnification of the imaging
system. We use the atomic cloud to calibrate the effective size of a single pixel in the two different
directions. The camera has a pixel size of 6.45 × 6.45 µm2. In Fig. 4.4(c), we image the cloud falling
under gravity for different time of flight durations 𝑡tof . The center-of-mass cloud position is given by

𝑧com =
1
2
𝑎𝑡

2
tof + 𝑧0, (4.2)

where 𝑎 is the acceleration in the 𝑧 direction in units of pixel/s2, and 𝑧0 is the initial cloud position.
We calculate an effective pixel size from the known gravity of earth 𝑔 [144] as 𝑔/𝑎 = 4.09 µm/pixel.
We assume the vertical imaging system to have the same magnification along the 𝑥- and the 𝑧-axis, as
all optical elements are orthonormal with respect to the laser beam. The images in Fig. 4.4(b) are
given in µm by using the effective pixel size.

Once the effective pixel size has been determined for the vertical imaging system, it can serve as a
reference for the horizontal imaging system. To determine the effective pixel size in the horizontal
direction, the atoms are trapped in a magnetic trap [73]. The magnetic field experienced by the atoms
in the 𝑥 direction is given by

𝐵(𝑥) = 𝐺x ⋅ 𝑥 + 𝐵x,bias + 𝐵x,bg,

where 𝐺x is the trapping gradient field, 𝐵x,bias is a controllable bias field, and 𝐵x,bg is a background
field in the lab. For 𝐵(𝑥) = 0, we find the position in 𝑦 direction with zero field as

𝑥(𝐵x,bias) = −𝐵x,bias/𝐺x − 𝐵x,bg/𝐺x.

Figure 4.4(d) shows the shift of the atomic distribution center along the common axis of the two
imaging systems, while the different traces are recorded for different applied magnetic bias fields.
From this and the known shift in the vertical direction, we calibrate the effective pixel size in the
horizontal direction to 5.27 µm/pixel.

Once the imaging system has been calibrated, the absorption images can be used to characterize the
atomic cloud. The temperature of the atomic cloud can be determined by observing its expansion as a
function of time-of-flight [145]. For each time of flight, a Gaussian function given by

𝑓 (𝑥) = 𝐴 ⋅ exp(−[𝑥 − 𝑥0]2/[2𝜎2]) +𝐶

is fitted to the absorption images, and the width of the distribution is extracted. The temperature of the
atomic cloud 𝑇 is obtained from the function

𝜎(𝑡tof) =
√

𝑘B𝑇

𝑚Rb
𝑡
2
tof + 𝜎2

0 , (4.3)

where 𝑘B is the Boltzmann constant, 𝑚Rb is the mass of rubidium-87 and 𝜎0 is the initial cloud size.
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Crossed and Dimple Optical Dipole Trap

To perform experiments involving collective Rydberg excitations, as introduced in Chapter 2, a cold
and unperturbed atomic cloud is required. The strong magnetic field gradients present in the MOT are
incompatible with coherent excitation.

A suitable alternative is the use of far off-resonant optical dipole traps [112]. These traps enable tight
spatial confinement without significant scattering, and they can be configured to reduce perturbations
to internal atomic states. In our experiments, a brief release from the trap followed by recapture allows
multiple measurements to be conducted with the same atomic cloud, while avoiding differential light
shifts during the free-fall phase.

As indicated in Fig. 4.1(b), the optical dipole trap in our experiments is formed by two crossed
laser beams. Their crossing angle is 31.4○. The crossing region is overlapped with the center of
the compressed MOT. Figure 4.5(a) and 4.5(b) show the transfer sequence from the MOT into the
crossed trap. In order to optimize the transfer efficiency, we increase the magnetic field gradients at
the end of the MOT phase to decrease the spatial extent of the atomic cloud. With a cloud volume
of approx. 200 µm3, the overlap with the crossed dipole trap is increased. We increase the optical
density of the cloud by simultaneous evaporative [146, 147] and Raman sideband cooling [148–151].
More details on the cooling stage can be found in Ref. [152, 153]. We reach a final atom number
of 60000(3000) with a temperature of 6.7(2)µK. The temperature is determined from the cloud
expansion in Fig. 4.4(e). The density of the atomic cloud distorts the measured atom distribution for
the initial absorption image. In the calculated trapping potential, we estimate a peak atomic density of
3.6 × 1012 1/cm3.

Figure 4.5(c) shows the cigar-shaped cloud with the long axis along the probe direction. We define
the length of the atom cloud 𝐿 = 81.6 µm as the 1/𝑒2 full-width.

The atom cloud can be further shaped by a dimple beam, which is perpendicular to the long axis of
the cloud as indicated in Fig. 4.1(b). The dimple beam is focused onto the atom cloud by an objective
with an effective focal length of 79.5 mm. An acousto-optic deflector (AOD) allows the deflection of
the incoming beam into multiple steerable macro tweezer beams. Their position can be individually
adjusted along the 𝑥-axis, as described in Ref. [154]. The 1/𝑒2 waist radius in the 𝑥 direction is 7.4 µm,
and allows trapping ensembles that are smaller than the Rydberg blockade radius. Thereby, we can
realize one [30, 88] or up to three [91] Rydberg superatoms, which are discussed in Section 2.3.

4.1.2 Two-Photon Excitation Optics

With the atoms trapped and cooled in the optical dipole trap, the experiments with Rydberg atoms can
take place. Figure 4.6 shows the optical setup for the two-photon Rydberg excitation that corresponds
to the excitation scheme introduced in Section 2.1. The setup consists of a single 480 nm control
beam together with two 780 nm probe beams from opposite directions. All beams for the two-photon
excitation are propagating along a single axis. This configuration allows us to perform measurements
with probe and control light co- and counter-propagating depending on the choice of probe beam.
Starting with probe 2 on the left side in Fig. 4.6, the 780 nm light is coupled out of a single mode
polarization-maintaining fiber10 with a fixed 25.08 mm focal length triple lens collimator.11 The light

10 OZ Optics PMJ-3AF-3AF-850-5/125-3A-8-1
11 Thorlabs TC25APC-780
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Figure 4.5: (a) Timing sequence for evaporative and Raman sideband cooling (RSC). (b) Intensity ramps to
cool the atoms trapped in the crossed dipole trap by evaporative cooling with simultaneous Raman sideband
cooling. See the main text for details on the Raman sideband cooling. An optical pumping (OP) pulse prepares
the atomic state, which is discussed later in Section 4.2. (c) Absorption image of the atomic cloud prepared in
the crossed optical dipole trap, right after the optical pumping. (d) Atom number as a function of holding time
in the optical dipole trap.

is transmitted through a polarizing beamsplitter cube (PBS) and turned into right-handed circularly
polarized light by a set of half- and quarter-wave plate.

The beam passes through two dichroic mirrors to separate the counter-propagating 1012 nm light12

and the 480 nm control light,13 respectively. Afterward, the probe beam is focused into the vacuum
chamber glass cell by an achromatic lens outside the vacuum chamber. The effective focal length
of this lens is 𝑓eff = 50 mm.14 We determined the waist radius of the probe and the control beam by
removing the vacuum chamber from the magnetic coil cage in Fig. 4.1(a). The beam is recorded at
different positions in the 𝑥 direction with a camera, while a small glass window sample is placed in
the beam path to mimic the glass cell window. The 1/𝑒2 intensity waist radius of the probe beam
is 5.1 µm, and for the control beam it is 19.1 µm.

The atomic cloud has to be positioned at the waist of the probe beam. In order to determine the
waist position precisely, we use the atom cloud as a measurement tool. A probe beam with a classical
beam power can remove atoms locally from the larger ensemble by scattering photons. The extent
of the atom cloud confined in the crossed dipole trap, as in Fig. 4.6(c), is with a length 𝐿 = 81.6 µm
comparable to the Rayleigh range of the probe beam with 𝑥R,p = 100 µm. Therefore, we perform
these measurements with the atoms trapped in the dimple trap, which can be positioned over a larger

12 Thorlabs DMSP950
13 Thorlabs DMLP650
14 Edmund Optics #49-328, Achromatic Lens 12.5 mm Dia. × 50 mm FL, VIS-NIR Coating
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Figure 4.6: Setup for two-photon Rydberg excitation with two counter-propagating 780 nm probe (1,2) beams.
The white arrows indicate the propagation direction of the probe 2 beam. The beam polarizations are set by
half-wave plates (HWP) and quarter-wave plates (QWP). After passing the atoms, the probe light is reflected
on polarizing beamsplitter cubes (unlabeled cubes) towards the single photon counting modules (SPCMs). A
50/50 beamsplitter cube overlaps the hyperfine optical pumping and probe 1 light. The 480 nm control and
the 1012 nm trap beam are superimposed with the probe beams with dichroic mirrors. All beams propagate
collimated outside the vacuum chamber and are focused onto the atoms with a pair of lenses. The control light
intensity is stabilized with a photodiode (PD) placed behind the chamber.

𝑥-range.
Figure 4.7(a) shows the atom cloud at different positions in the 𝑥 direction, where the probe

beam removes atoms within its beam path. For this measurement, the atoms are released from the
trap and expand for 0.3 ms before being exposed to the probe beam. We determine the width from
where atoms are removed by a fit of two Gaussian distributions as shown in Fig. 4.7(b). The overall
cloud is described by one wide Gaussian, and a second narrower Gaussian with negative amplitude
characterizes the distribution of missing atoms. The respective widths are the waist radius, where
the integrated OD reduced to 1/𝑒2. The change of the waist along the 𝑥-axis follows the theory for a
Gaussian beam waist as shown in Fig. 4.7(c). We position the atomic cloud with the crossed optical
dipole trap in the focus of the probe beams. All parts of the experiment are referenced with respect to
the focal point of the probe beam.

After passing the atoms, the probe 2 polarization is rotated to be orthogonal with respect to the
polarization at the outcoupler and, hence, reflected at the PBS. The probe light is coupled into a single
mode fiber15 towards our single photon detection setup. We do not require a polarization-maintaining
fiber for the probe towards the detection setup, as the detection setup is not polarization sensitive, and
our analysis is based on the absolute number of detected photons.

In Fig. 4.8, we sketch the detection setup of the probe beam. After the single mode fiber, the probe
beam is split into four parts in a Hanbury Brown and Twiss setup [155, 156]. Each output beam is
coupled into a multimode fiber and onto a single photon counting module16 (SPCM). The SPCMs
have a specified quantum efficiency of 64 % at 780 nm. The transmission from the atomic cloud to the
output of the multimode fiber is 55 %. We attenuate the probe beam to typically use photon count
rates below 1 Mc/s, where the SPCMs are linear in their count rate response. The SPCM dark count
15 Thorlabs 780HP-Custom Patch Cable Fiber: 780HP, Tubing: FT061PS, End Facets: FC/PC and FC/APC, Length: 2 m
16 Excelitas SPCM-AQRH-23 FC
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Figure 4.7: (a) Absorption images of the atomic cloud trapped in the dimple beam, where a center fraction of
atoms is removed by resonant probe light. The position of the cloud is varied along the 𝑥-axis to determine the
focal point of the probe beam. (b) Integrated optical depth for two different dimple cloud positions 𝑥𝑑 . The
dashed lines show the double Gaussian fits that are used to extract the width from where atoms are pushed away
from the probe beam. (c) The probe beam waist as a function of the dimple cloud position. Each data point is
extracted from fits as in (b) and compared to the theoretical beam waist for a Gaussian beam as in Eq. 3.17. The
images shown in (a) are measured for the different positions in (c).

rate of 731(3)Hz in the worst of the four counters is well below the used signal count rates in the
experiment. We use two transmission band-pass filters to block all other light except for the 780 nm
probe photons. The Semrock FF01-780/12-25 and the Semrock LL01-780 create a combined optical
density of 6.6 for the 480 nm control light and of 10.9 for the 1064 nm crossed dipole trap light. To
reduce standing-wave interference between the two filters, the first is mounted before and the latter
after the single mode fiber.

The setup is almost identical for the probe 1 beam that is counter-propagating with probe 2. A beam
for the hyperfine optical pumping is overlapped with the probe 1 beam on a non-polarizing beam
splitter. We ensure the overlap between both probe beams by cross-coupling one into the out-coupling
fiber of the other.

4.1.3 Few-Photon Transmission through the Atomic Cloud

The detection of probe pulse transmission through the atomic ensemble is our essential tool to
investigating the coupling of photons to matter. As an alkali atom with a single outer electron and a
nuclear spin of 𝐼 = 3/2, rubidium-87 has multiple hyperfine states.

Figure 4.9(a) shows the optical probing transition close to 780 nm in the hyperfine state basis. The
weak probe light is 𝜎+ polarized to drive the closed transition ∣𝐹 = 2, 𝑚𝐹 = 2⟩↔ ∣𝐹 = 3, 𝑚𝐹 = 3⟩. We
define the quantization axis of our system along a magnetic field that can be generated with the bias
coils. This magnetic field is along the probe direction.
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Figure 4.8: Schematic of the few-photon transmission measurement setup. The transmission of the 780 nm probe
beam is coupled into a single-mode fiber. In a Hanbury Brown Twiss (HBT) setup, the transmitted photons are
split into four paths using three 50/50 beamsplitters and detected on single photon counting modules.

Figure 4.9(b) shows the timing sequence for the probing measurements performed on the cold
rubidium atoms in the crossed dipole trap. In each experiment, the crossed dipole trap is turned off
as depicted in Fig. 4.9(c) to avoid inhomogeneous broadening of the probing transition due to the
trapping beam. In this example, a single 8 µs long probe pulse is sent onto the released atoms.

In the rest of this thesis, we denote the experiments with the released atoms as free-space experiments.
It has to be noted that the probe pulses in the bottom of Fig. 4.9(c) are averages over many repetitions
to show the overall pulse shape. A single pulse only contains ten to one hundred photons, depending
on the specific experiment. The few photons are detected with the setup shown in Fig. 4.8.

After the probe pulse, the dipole trap is turned back on to recapture the atomic cloud. The same
atomic cloud is probed 1000 times, where two probe pulse measurements are repeated every 100 µs.
At the end of the 1000 measurements, the atomic cloud is released by turning of the dipole trap
for 10 ms as marked in Fig. 4.9(a). During this period, the atoms leave the optical dipole trap crossing
region due to their kinetic energy and acceleration by gravity. Therefore, the atoms are not recaptured
when the crossed trap is turned back on.

We subsequently perform a second set of 1000 probe pulse measurements to reference the
transmission with and without atoms. We extract one thousand measurements per experiment cycle,
which corresponds to 1000 data points in 1.7 s.

Figure 4.9(d) shows the transmission as a function of the probe beam detuning. The theoretical
transmission can be calculated with the susceptibility of a two-level system given in Eq. 2.2. The
probe transmission through the atomic cloud is given by

𝑇(Δ𝑝) = exp
⎛
⎝

−OD

1 + 4 ⋅ (Δ𝑝/ΓD2)
2
⎞
⎠
, (4.4)

with ΓD2 as the natural linewidth of the D2 line in rubidium-87, and OD as the optical density of the
atomic cloud.

However, the fast switching of the trap intensity leads to a heating associated with parametric
excitation of the oscillatory atomic motion [56, 157]. The effect is increased by the small standing
wave nature of the two crossed trap beams as discussed in Section 4.1.1. The increase in temperature
reduces the atomic density in the crossed trap. The optical density OD decreases by a factor of 2 from
the first to the last one hundred measurement pulses.

The measurements presented in this thesis do not depend on the exact optical density, and it is
justified to consider the mean transmission across the 1000 pulses.
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Figure 4.9: (a) The optical transition used for the few-photon probing experiments. The probe laser with
frequency 𝜔𝑝 is detuned by Δ𝑝 = 𝜔𝑝 − 𝜔0 from the D2-line in rubidium-87, with transition frequency 𝜔0.
The indicated spontaneous decay rate ΓD2 is given by the natural lifetime of the excited state 5𝑃3/2. (b) The
timing sequence for transmission measurements that are performed after the atom preparation steps shown in
Fig. 4.5(a) and 4.5(b). One thousand pulses are measured with atoms and, after removing the atoms, one
thousand reference pulses are recorded. (c) The sequence for the 1000-times repeated probe transmission
measurement. The first set is measured with the atoms in the probe beam path and the second set is measured
afterward without the atoms. The beam power of the crossed trap (top) is switched off to release the atoms
during the probing. The probe pulses are averages over 40000 repetitions. (d) Transmission of the probe beam
as function of the probe detuning Δ𝑝 . Each data point is the ratio between the recorded probe photons with and
without atoms on the single photon detectors, as the example in (b). The transmission for each detuning is
averaged over 95000 single measurements. The dashed line shows a fit of the saturated absorption line model in
Eq. 4.4.

4.2 Atomic State Preparation

The experimental setup to measure the probe transmission of the cold atomic cloud allows us to
investigate and control the internal state of the rubidium atoms. For our quantum optics experiments,
we require stable and identical conditions from one experimental cycle to the next. In this section, we
explain how we compensate for external magnetic fields by using the atomic cloud as a sensor. We
furthermore discuss the method of optical pumping to prepare all atoms in a desired atomic state.

In order to drive the probing transition with a 𝜎
+ polarized photon as introduced in the previous

41



Chapter 4 Experimental Apparatus and Methods for Rubidium Rydberg Quantum Optics

section, we require a magnetic field pointing along the probe beam axis. Such a quantization axis is
shifted away from the probe beam axis by stray magnetic fields. A large source of stray magnetic
fields is the earth magnetic field, with a magnitude of about 0.5 G [158]. Furthermore, we have other
sources of magnetic fields in the lab, including but not limited to power supplies and an ion vacuum
pump about 50 cm away from the atoms.

According to the Zeeman effect, the hyperfine state energy is shifted in energy due to a weak
external magnetic field. The magnitude of this shift is given by [159, p. 669]

Δ𝐸𝐹,𝑚𝐹
= 𝜇B 𝑔𝐹 𝑚𝐹 𝐵𝑧 . (4.5)

The probe transition in our experiments shifts by 1.39 MHz/G due to the Zeeman effect. Therefore,
the earth magnetic field creates a shift of around 700 kHz ⋅ ℎ. Any such constant energy shift can be
compensated by detuning the excitation laser in frequency by the same amount.

Our experiment relies on passive stability of the local magnetic field inside the vacuum chamber
over the course of weeks.

The Zeeman shift does not scale with the principal quantum number 𝑛, because the magnetic
moment primarily depends on the angular momentum quantum numbers. Therefore, the Zeeman shift
is a relevant effect for both ground and Rydberg states.

During the initial setting up of the experiment, the orientation and magnitude of the total stray
magnetic field inside the vacuum chamber is unknown. To begin with, we compensate for any stray
magnetic fields to bring the hyperfine states into degeneracy. We extract the local stray magnetic fields
from microwave spectroscopy. Figure 4.10(a) shows the two hyperfine ground states of rubidium-87
including their magnetic substates in the presence of an external field.

The three coil pairs in Helmholtz configuration outside the vacuum chamber can compensate for
external homogenous magnetic fields. The magnetic substates in the atom are degenerate in the case
of zero magnetic field, where the Zeeman energy shift vanishes.

We use the atoms to measure the present magnetic field by detecting the energy splitting between the
magnetic substates. Therefore, we detect the population of the 𝐹 = 2 state in probe beam transmission
measurements. We start our sequence by transferring all atoms into the 𝐹 = 1 states. Afterward, we
apply a 2 ms long microwave pulse at 6.8 GHz with a microwave horn17 to transfer atoms into the
𝐹 = 2 states.

In Fig. 4.10(c), we show the transmission of our probe beam as a function of the microwave frequency.
We detect a reduced transmission for microwave frequencies at which we drive 𝐹 = 1 → 𝐹 = 2
transitions. For the applied magnetic field along the three dimensions of 𝐵 = (22, 104, 316)mG
in Fig. 4.10(c), we observe the seven expected microwave transitions indicated on the left side in
Fig. 4.10(b). We fit Gaussian peaks to the transmission dips and extract a common splitting for this
non-optimal compensation case.

The magnetic field gives rise to a residual level splitting of 16.4(1)kHz. These magnetic fields
are already quite close to the optimal condition, as we started with a Zeeman splitting of ∼ 300 kHz
(not shown here). The different depths of the transmission dips comes from the inhomogeneous
distribution of atoms across the initial magnetic substates. Imperfect depumping of the 𝐹 = 2 manifold,
gives rise to residual absorption of probe photon detuned from any microwave resonance. For
𝐵 = (7, 123, 316)mG, we find a splitting of 3.53(4)kHz in Fig. 4.10(d).

17 Flann Microwave 15094-SF40
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Figure 4.10: Hyperfine ground states of rubidium-87 in (a) the presence of external fields and (b) with
compensated external fields. All possible microwave transitions around the 6.8 GHz ground state splitting are
marked with arrows. (c), (d) Microwave spectroscopy for two different applied magnetic fields. The dashed
lines show a model with seven Lorentzian absorption lines. Figure (c) and (d) adapted from Ref. [153].

With this almost vanishing magnetic field inside the vacuum chamber, we have a starting point to
apply well-known magnetic fields pointing along the 𝑥-axis to define a quantization axis for the atoms.

After the compensation of stray magnetic fields, we create a magnetic field pointing in the 𝑥 direction
of Fig. 4.6(a). Thereby, the degeneracy of the magnetic substates in the hyperfine ground state of
rubidium-87 is lifted. We define the quantization axis along this magnetic field to describe our atomic
states in the hyperfine basis and drive 𝜎

+(−) transitions.
Figure 4.11(a) shows the hyperfine states relevant for the rubidium D2 line. In order to describe the

atoms as a two-level system and describe the transmission by Eq. 4.4, the atoms have to be prepared in the
target state ∣𝐹 = 2, 𝑚𝐹 = 2⟩. From this state, the probing transition ∣𝐹 = 2, 𝑚𝐹 = 2⟩→ ∣𝐹′ = 3, 𝑚𝐹 = 3⟩
is a closed transition. However, the atoms are distributed over the different magnetic substates after the
initial trapping and cooling steps. Atom preparation in the target state is done by optically pumping
the atoms with two 𝜎

+ polarized beams. The beam on the 𝐹 = 2 → 𝐹
′ = 2 transition increases

the magnetic quantum number by one, with Δ𝑚𝐹 = +1 upon excitation. Afterward, the atom can
spontaneous decay with Δ𝑚𝐹 = 0,±1. Over time, all the atoms will accumulate in the dark state
∣𝐹 = 2, 𝑚𝐹 = 2⟩ from where no excitation is possible. The atoms can fall from the 𝐹

′ = 2 manifold
into the states with 𝐹 = 1, which would remove them from the pumping cycle. A second beam, that is
detuned by 6.8 GHz, is used to repump the atoms out of the 𝐹 = 1 manifold. In the experimental setup,
both beams are overlapped and denoted in the following as the optical pumping beam. We optimize
the optical pumping into the dark state by adjusting the detuning of the optical pumping and repumper
beam as well as their optical power.

Figure 4.11(b) shows the optical density measurement performed on the 𝐹 = 2 → 𝐹
′ = 2 and

𝐹 = 2→ 𝐹
′ = 3 transition. We calculate a state preparation in the state ∣𝐹 = 2, 𝑚𝐹 = 2⟩ with respect to

the other ∣𝐹 = 2⟩ states of 99.6 % from the respective optical densities. After the atoms are prepared
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Figure 4.11: (a) Relevant hyperfine states of rubidium-87 D2 line with a small magnetic field applied. The
atoms are optically pumped by a polarizer beam (orange, solid arrow) and a repumper beam (orange, dashed
arrow). (b) Transmission through the atomic cloud as function of the probe beam detuning Δ𝑝. The atoms
absorb the probe light at Δ𝑝/2𝜋 = 0 MHz on the 𝐹 = 2 → 𝐹

′ = 3 transition and at Δ𝑝/2𝜋 = −266 MHz on the
𝐹 = 2→ 𝐹

′ = 2 transition. The absorption on the latter with optical pumping (dark red, circles) is significantly
reduced compared to the case without optical pumping (light red, squares) applied.

in the state ∣𝐹 = 2, 𝑚𝐹 = 2⟩ in the experimental cycle, we can excite them into Rydberg states.

4.3 Excitation and Detection of Rydberg Atoms

In this section, we discuss the implementation of the Rydberg experiments introduced in Chapter 2. All
the experiments are performed with the un-trapped cloud of atoms in accordance with the transmission
measurements in Fig. 4.9.

First, we present the measurements for EIT, slow light, and photon storage and retrieval experiments
as introduced in Chapter 2. In the end, we outline how we detect and compensate stray electric fields
in the vacuum chamber.

4.3.1 Measurements of Electromagnetically Induced Transparency

Figure 4.12(a) shows the two-photon excitation scheme to excite a rubidium-87 atom into the Rydberg
state 𝑛𝑆. The excitation scheme follows the idea of the ladder EIT system discussed in Fig. 2.1, where
we detect the transmission of the few 780 nm probe photons.

In the Rydberg experiments, the control laser couples the intermediate state 5𝑃3/2 to a Rydberg
state. The exact wavelength of the control laser depends on the principal quantum number 𝑛 of the
Rydberg state. In our experiments, we address Rydberg states from 45𝑆 to 108𝑆. Between these
Rydberg states, the excitation wavelength from the 5𝑃3/2 state changes from 480.5 nm to 479.3 nm.

We find the exact wavelength for one specific Rydberg state by intentionally degrading the MOT
loading. For that purpose, the MOT is monitored in the fluorescence imaging without cycling the
experiment. The control laser wavelength is changed until the MOT signal gets fainter, and that is
exactly at a wavelength when the control laser couples the excited state of the MOT cooling transition,
5𝑃3/2, to a Rydberg state and interrupts the MOT cooling cycle. The wavelength of the laser is
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Figure 4.12: (a) Relevant energy levels in rubidium-87 for our two-photon transition. The probe and control
beam have a single-photon detuning of Δ𝑝 and Δ𝑐, respectively, and the two-photon transition has a two-photon
detuning of 𝛿 = Δ𝑐 − Δ𝑝. (b) Electromagnetically induced transparency for the 89𝑆 Rydberg state. Each
detuning data point is an average over 7000 repetitions. The dashed line fit is given by the transmission in
Eq. 2.2 and the susceptibility in Eq. 2.1. (c) Transmission of probe photons in the absence (red) and presence
(blue) of the control light. The control detuning Δ𝑐/2𝜋 is set to 0 MHz, −20 MHz, and −100 MHz with respect
to the resonance of the Rydberg state 108𝑆.

monitored with the wavelength meter to an absolute accuracy of 200 MHz. Thereby, we can resolve
e.g. the Rydberg state 108𝑆 from neighboring states, which are detuned by 5.6 GHz according to
Eq. 2.10.

Figure 4.12(b) shows the EIT transmission window, where the probe photons can pass the atomic
cloud on two-photon resonance with 𝛿 = Δ𝑐 − Δ𝑝 = 2𝜋 × 0 MHz to Rydberg state 89𝑆. The detuning
dependence follows the theoretical transmission shape with the susceptibility given in Eq. 2.1. We
extract a control Rabi frequency of Ω𝑐/2𝜋 = 9.2 MHz and an optical depth of OD = 64. In Fig. 4.12(c),
the power-broadened EIT window is measured with Rydberg state 108𝑆. Additionally, in Fig. 4.12(c),
the two-photon excitation is measured for the same three values of the control detuning Δ𝑐 as shown in
Fig. 2.1(b). The three cases match with theoretical transition from the EIT case towards the two-photon
Raman resonance.
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4.3.2 Photon Storage Experiments with Atoms in Free Space

In our experiments, photon storage allows us to measure the temporal decay of collective Rydberg
excitations within the atomic ensemble. We later use this decay behavior to investigate the conditions
for magic trapping of these excitations.

During photon storage and retrieval, probe photons propagate through the trapped atomic cloud as
Rydberg polaritons under Rydberg electromagnetically induced transparency (EIT), as introduced in
Section 2.1.1. To ensure EIT resonance, both the probe detuning and the two-photon detuning are set
to Δ𝑝/2𝜋 = 𝛿/2𝜋 = 0 MHz.

The insert in Fig. 4.13(a) shows the measurement procedure: A probe pulse propagates through the
atomic ensemble under EIT resonance conditions. The control field is then switched off and kept off
for a variable duration, during which the probe pulse is stored within the ensemble. When the control
field is turned back on, the probe pulse resumes its propagation through the medium.

Furthermore, Figure 4.13(a) shows the recorded single photon probe trace and timing for the control
light in a typical photon storage and retrieval experiment. The incoming probe pulse is stored inside
the atomic cloud, when the control laser is switched off. A small amount of probe photons is already
transmitted during the storage process, where the control light is still on. No probe photons are
detected until the control light is turned back on after a storage duration 𝑡𝑠. The control light converts
the stored spin wave back into a propagating polariton, where the atomic coherence is mapped into a
light field that leaves the cloud.

From the measured data in Figure 4.13(a), the retrieval efficiency 𝜂 is calculated as

𝜂(𝑡𝑠) =
𝑆w/(𝑡𝑠 > 0.25 µs)

𝑆w/o(𝑡𝑠) − 𝑆w/(𝑡𝑠 < 0.25 µs) . (4.6)

Here, 𝑆w/ denotes the summed probe photon trace recorded with atoms in the path, and 𝑆w/o the trace
without atoms. We only consider storage durations > 0.25 µs, to clearly distinguish the stored and
retrieved photons from the transmitted photons during the storage process. Figure 4.13(b) shows the
measured retrieval efficiency 𝜂 as function of storage duration 𝑡𝑠, extracted from the measurement
presented in Fig. 4.13(a).

It can be seen that the fraction of the stored probe pulse that is successfully retrieved decreases with
increasing storage time, indicating that the collective excitation undergoes dephasing. Section 2.1.1
discussed various dephasing mechanisms, including motional dephasing caused by the thermal motion
of the atoms. The temperature of the free-space atomic cloud is determined using a time-of-flight
measurement to be approximately 𝑇 = 6.0(2)µK. For this temperature, the thermal decay model
given in Eq. 2.7 yields a decay time constant of 𝜏T,0 = 8.3(1)µs for counter-propagating probe and
control beams. For the measurement with the counter-propagating configuration, we extract a decay
constant of 𝜏T = 8.44(4)µs from a fit to find a good match with the theoretical model. For comparison,
the expected decay constant for a co-propagating configuration of probe and control beam would
be 𝜏T,0 = 1.97(3)µs.

In Fig. 4.13(b), a small oscillation of the retrieval efficiency as a function of storage time is visible
for 𝑡𝑠 < 5 µs. In this case, the oscillation comes from high atomic density, and the exact mechanism
will be discussed in Chapter 5.

However, similar oscillations can also arise from other effects, such as more complex decay dynamics
associated with the internal states of the atomic cloud. Next, we present an example of beating arising
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Figure 4.13: (a) Photon storage and retrieval measurement for Rydberg state 61𝑆. The input photon pulse (gray)
is stored inside the atomic medium upon the switching off of the control light (dashed lines). The control light
traces are not to scale and are only added for visualizing the sequence. A pulse of probe light is retrieved
after the variable storage duration 𝑡𝑠 by turning back on the control light. Each storage duration is measured
separately, and the presented traces are averages of 71000 single measurements. The input probe pulse is
recorded in the second half of our experiments without any trapped atoms. During the storage process, a small
fraction of probe photons are simply transmitted or immediately read out. (b) Retrieval efficiency as function of
storage duration 𝑡𝑠. The efficiency 𝜂(𝑡) is calculated with Eq. 4.6 from the data in (a). In this experiment, the
atomic cloud is in free space and its temperature determined as 𝑇 = 6.0(2)µK by time-of-flight in absorption
imaging. The two dash-dotted lines show the Gaussian decay envelope with the above temperature, assuming
counter- (red) and co-propagating (blue) probe and control beams. The gray curve shows the coherence time
limit given in Eq. 2.7 due to spontaneous decay and black-body induced transitions.

from different two-photon excitation pathways due to imperfect atomic state-preparation or imperfect
probe and control polarization. If there are two or more possible two-photon transitions from the
ground state towards the Rydberg state, a temporal beating in the retrieval efficiency 𝜂(𝑡𝑠) arises,
and the beat frequency depends on the energy difference between the respective transitions. In our
experiments, the atoms are prepared in the state ∣5S1/2, 𝐹 = 2, 𝑚𝐹 = 2⟩ to have a single excitation path
towards the Rydberg state. However, in case of imperfect state preparation, the atoms are distributed
over the different hyperfine states with quantum numbers 𝑚𝐹 .

Figure 4.14(a) illustrates the excitation paths from different sublevels in the hyperfine ground state
with the two-photon excitation towards a single Rydberg state. As discussed in Section 4.2, we apply
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Figure 4.14: (a) Two different excitation paths from different Zeeman states towards the Rydberg state 45𝑆.
(b) Photon retrieval efficiency 𝜂(𝑡𝑠) for different external magnetic field strength and Rydberg state 45𝑆. The
dashed lines are fits of Eq. 4.7 with the envelope function discussed in the main text. (c) Zeeman shift extracted
from fits in (b) as function of the applied magnetic field. The theoretical line follows the theoretical Zeeman
splitting between two neighboring 𝑚𝐹 ground states with a slope of 0.7 MHz/G.

a magnetic field to define a quantization axis and, to lift the degeneracy between the ground-state
sublevels. This results in the Zeeman shifts of the different 𝑚𝐹 states shown in Fig. 4.14(a), and
the resulting energy differences lead to the observed beating. The two-photon excitation shows an
interference between two neighboring hyperfine states.

Figure 4.14(b) shows the interference between two excitation pathways imprinted on the retrieved
photon number. For this measurement, the atoms are distributed across multiple magnetic ground state
states by deliberately using imperfect optical pumping. A similar beating in the retrieval efficiency as
a function of storage duration has been observed in Ref. [43] and Ref. [160], where the collective state
has been encoded in two different rubidium-87 hyperfine ground states. The decay signal involving
states with a Zeeman splitting of ΔZeeman is given by [160]

𝜂(𝑡) = 𝜂0 ⋅ 𝑓 (𝑡) ⋅ ∣𝑢 + (1 − 𝑢)𝑒−𝑖2𝜋ΔZeeman𝑡 ∣2, (4.7)

where 𝑢 describes the population distribution between the different Zeeman states, and 𝑓 (𝑡) is an
overall decay envelope. For free space atoms, the decay envelope is given by a Gaussian function as
discussed in Chapter 2. In the presented measurements, the atoms are not trapped in free space, but in
a standing-wave trap that is covered later in Chapter 5. Due to the different trap, the model has an
envelope of 𝑓 (𝑡) = 𝑒−𝑡/𝜏𝑇 .

From the retrieval efficiency data, the model can be used to extract the respective Zeeman splitting for
a given applied magnetic field. Figure 4.14(c) shows the Zeeman shift ΔZeeman as function of magnetic
field amplitude along the 𝑥 direction. We observe a linear shift with the same slope as given by the
theoretical Zeeman shift in Eq. 4.5 between two neighboring 𝑚𝐹 states. For weak magnetic fields, the
observed linear shift is only given by the ground state Zeeman splitting of 0.7 MHz/G. In the Rydberg
state, the coupling between the nucleus and the outer electron is much lower compared to the ground
or first excited states. Therefore, the energy levels and the respective Zeeman shift are described in
the fine structure basis. The atoms are excited to a high-lying Rydberg state ∣𝑛𝑆, 𝐽 = 1/2, 𝑚𝐽 = +1/2⟩,
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which is the same final state for both excitation pathways in Fig. 4.14(a). The shift of the intermediate
state 5𝑃3/2 can be neglected in the two-photon excitation between a ground state and the Rydberg
state. A slightly off-resonant excitation with respect to the intermediate state lowers the excitation
probability from the secondary 𝑚𝐹 state. As long as the ground state Zeeman shift is smaller than the
intermediate state decay rate ΓD2, the shift of the intermediate state does not change the beat frequency.

The optical pumping is optimized as discussed in Section 4.2 to not observe the interference of
multiple Zeeman levels.

Figure 4.15 shows the difference that the correct state preparation has on the photon storage
and retrieval experiments. In the measurement without optical pumping, a fit of Eq. 4.7 extracts
a 𝑢 = 71.3(9)%. The relative population between the target ground state and the other Zeeman states
is optimized by optical pumping to 𝑢 = 99.4(3)%, which is equal to the value derived from the
measured residual absorption in Section 4.2. We attribute the overall increased retrieval efficiency to a
more efficient storage and retrieval process starting from the target ground state.

Based on these measurements, we confirm the successful preparation of the same ground state
across the whole atomic ensemble.

4.3.3 Compensation of External Electric Fields

Stray electric fields at the position of the atomic cloud can lead to inhomogeneous and instable energy
shifts of the Rydberg state. This DC Stark shift [161] is driven by the interaction between the electric
field and the dipole moment of the atom. The dipole moment is proportional to 𝑛

2 and makes Rydberg
states especially sensitive to electrical fields. Here, we introduce this energy shift and explain our
methods to detect and compensate for it.

We apply time independent perturbation theory to get the impact of a weak electric field on the
atomic levels of Rydberg atoms. As outlined in Section 3.1.2, the energy correction 𝛿𝐸𝑞 for the state
∣𝑞⟩ subject to a perturbation �̂� is expressed as

𝛿𝐸𝑞 = ⟨𝑞∣�̂� ∣𝑞⟩ +∑
𝑗≠𝑞

∣ ⟨𝑞∣�̂� ∣ 𝑗⟩∣2

𝐸
(0)
𝑞 − 𝐸(0)𝑗

. (4.8)

The perturbation Hamiltonian for a Rydberg atom placed in a weak electric field 𝑬 is given by �̂� = 𝑒∣𝑬∣𝑥
as function of position 𝑥. We calculate the two terms in Eq. 4.8 for this perturbation. The first term
evaluates the expectation value for an antisymmetric function, which vanishes for identical states. The
coupling between different Rydberg states in the second term in Eq. 4.8 leads to a quadratic scaling
of the energy correction with the electric field amplitude. For non-degenerate 𝑆-states, we write the
energy shift due to an electric field 𝐸 as

𝛿𝐸Stark =
1
2
𝛼static𝐸

2
, (4.9)

where the static polarizability 𝛼static is given by Eq. 2.12. In the presence of an external field 𝐸ext, a
controlled electric field 𝐸comp can be applied for compensation with

𝛿𝐸Stark =
1
2
𝛼static(𝐸ext − 𝐸comp)2. (4.10)
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Figure 4.15: Photon storage and retrieval performed on an atomic cloud without (light red, circles) and with
(dark red, squares) optical pumping. The dashed lines are fits of Eq. 4.7 with the envelope function discussed in
the main text.

For a compensated external field, the two-photon transition is to first order insensitive to changes in
the external electric field.

We utilize the atoms themselves as a probing device for the presence of external electric fields. In
Fig. 4.16(a), we show the shift of the two-photon Raman resonance as function of an applied electric
field 𝐸𝑧 in the 𝑧 direction. The local electric field is generated with in-vacuum electrodes [129]. We
shift the two-photon Raman resonance by applying the electric field. From the scaling, we can extract
the degree of electric field compensation as well as the static polarizability 𝛼static for the given Rydberg
state. In the upper panel, we show the Stark map in the presence of a not perfectly compensated
external field. The compensation field 𝐸comp does not cancel the external field as visualized by the
vectors in the small inset. In the lower panel, we apply the correct compensation field, denoted as 𝐸𝑖,0,
for the direction 𝑖. The compensation of external fields makes the two-photon Raman resonance less
sensitive to electric fields and ensures that the two-photon excitation stays on resonance.

In Fig. 4.16(b), we show the compensation electric field magnitude 𝐸𝑖,0 in the three spatial directions
over the period of four months.

Any dust close to the vacuum chamber can carry electrical charges and changes the local electric
field inside the vacuum chamber. To keep a stable and clean environment, we have a laminar flow of
dust-filtered air coming in through the top of the optical table enclosure. The inflow of air keeps a
slight overpressure on the optical table and prevents dust from settling close to the vacuum chamber.

Figure 4.16(c) shows the scalar polarizability 𝛼Stark for Rydberg states 𝑛𝑆1/2 as function of the
principal quantum number 𝑛. Each data point and uncertainty is derived from the average and the
standard deviation of at least four measurements as shown in Fig. 4.16(a). We find a good agreement
with the calculated polarizabilities in Eq. 2.12.

4.3.4 Field Ionization of Rydberg Atoms

The compensation of stray electric fields described in the previous section requires that the fields
created by residual charges varies only on much longer time scales than our experiments. On the
much shorter timescale from probe pulse to probe pulse, any residual Rydberg atoms from previous
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Figure 4.16: (a) Stark maps of the two-photon Raman resonance to Rydberg state 108𝑆. The red markers show
the two-photon Raman resonance detuning determined from Lorentzian fits to the transmission along the probe
detuning Δ𝑝 axis. The upper map shows the case with a residual external electric field of 4 mV/cm, indicated
by the vertical gray dotted line. In the lower map, the correct compensation field 𝐸𝑧,0 is applied to cancel
an electric field. The red dashed lines are fits of Eq. 4.10 to the two-photon Raman resonance shifting with
respect to the applied electric field to extract the static polarizability 𝛼static and residual electric fields 𝐸res.
(b) The change of applied electric field components 𝐸𝑖,0 to compensate external electric fields. (c) The static
polarizability 𝛼static as function of principal quantum number 𝑛. The yellow dashed line shows the expected
polarizability according to Eq. 2.12.

transmission measurements can influence subsequent measurements. The interaction between two
Rydberg atoms is required and favorable for the Rydberg quantum optics experiments discussed in
Section 2.3, but can hinder high repetition rate experiments. The timescale is limited on one hand by
the lifetime of the Rydberg state.

In our experiments is the duration between two probe pulse experiments at least 50 µs. This is too
short in comparison to the effective Rydberg state lifetimes in Eq. 2.16. On the other hand, the dipole
trap that confines the ground-state atoms between each probe experiment repels the Rydberg atoms as
discussed in Chapter 3.

In order to further ensure the reproducibility of the 1000 experiment pulses, we remove any
remaining Rydberg atoms by field ionization with the in-vacuum electrodes [129].

The required electric field to ionize a Rydberg atom in a Rydberg 𝑆-state with effective principal
quantum number 𝑛∗ is given by [101]

∣𝐸 ∣ =
𝜋𝜖0𝑅

2
Ryd

𝑒
3
𝑛
∗4 . (4.11)

This ionization electric field is shown Figure 4.17(a) together with the highest ionization field 𝑉ion that
can be produced in our setup. Due to the geometry of the electric field electrodes and the voltage
supply, Rydberg states as low as 𝑛 = 47 can be ionized. The ionization voltage 𝑉ion is applied generally
after 21 µs in Fig. 4.9(c). We measured a minimal ionization duration of 0.4 µs to ionize Rydberg
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Figure 4.17: (a) The electric field strength that is required to ionize a Rydberg state with principal quantum
number 𝑛 as given in Eq. 4.11. The gray shaded area marks the fields that cannot be achieved with our
experimental setup. (b) Probe transmission pulses with Rydberg state 61𝑆 for different peak ionization voltages
𝑉ion. The probe laser is detuned by 4 MHz to the side of the EIT window in Fig. 4.12. The dashed line is a
reference pulse measured without atoms. An electrical field with different strength is applied during the blue
shaded ionization duration.

state 61𝑆.
The large ionization fields in Fig. 4.17(a) can themselves disturb the subsequent probe pulse

measurement. A moderate field of 30 mV/cm shifts the Rydberg resonance by 5 MHz, as shown in
Fig. 4.16(a).

In Fig. 4.17(b), the recovery of an EIT condition is observed after an ionization pulses ended. The
three measurements with the atoms (solid lines) are performed with a probe detuning of Δ/2𝜋 = 4 MHz,
which corresponds to the slope of the EIT window and makes the measurements more sensitive for
electric field changes. Even for the highest ionization fields of 87 V/cm, the EIT condition is recovered
after less than 0.4 µs. The measurement in Fig. 4.17(b) is performed with Rydberg state 61𝑆, with a
static polarizability of 𝛼static = 201.4 MHz/(V/cm)2. In a measurement for Rydberg state 89𝑆 with
𝛼static = 2764 MHz/(V/cm)2, we find a recovery of the EIT condition within 1.5 µs. This longer
settling time can be avoided by applying a lower ionization fields 𝑉ion, shown in Fig. 4.17(b), while
the higher Rydberg states still are ionized according to Fig. 4.17(a). From this data, we conclude that
the electric fields from the ionization pulse are not influencing our measurements.
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CHAPTER 5

Collective Rydberg Excitations in Magic Traps

In the photon storage and retrieval experiments presented in Chapter 4, the atoms were released from
the optical trapping potential during the measurement sequence. However, it is also possible to create
an optical potential that confines the atoms in both their ground state and the relevant Rydberg state by
coupling the Rydberg state to lower-lying states.

This chapter describes our experimental implementation of two such magic traps: a running-wave
and a standing-wave configuration. We present the characterization of these traps and the procedure
used to determine the magic wavelengths experimentally. Throughout this chapter, the formalism
developed in Chapter 3 is applied to evaluate the differential light shifts between the ground and
Rydberg states. For clarity, we use the term one-dimensional trap to refer to the traps formed by a
single beam propagating along the 𝑥-axis.

5.1 Near-Resonant Trap for Rydberg Atoms

For the magic one-dimensional trap for rubidium-87, we use a laser at a wavelength of around 1012 nm.
This laser is far off-resonance with respect to the lowest two transitions from the ground state in
rubidium-87 at 795 nm (D1-line) and 780 nm (D2-line) [131, 132]. For the purpose of magic trapping,
the laser is tuned close to the resonance between the Rydberg state and the lower-lying 6𝑃3/2 state.

5.1.1 Optical Setup for the One-Dimensional Traps

Figure 5.1(a) shows the arrangements of optics around the experimental chamber to realize the
one-dimensional traps. Both one-dimensional traps are aligned along the probing axis as shown in
Fig. 4.6. The beam is coupled out of a single mode fiber and linearly polarized by a PBS. To control
the beam waist and focal position inside the vacuum chamber, a demagnifying telescope with two
plano-convex lenses in a 4 𝑓 configuration and focal lengths of 400 mm and 50 mm is employed. The
trap beam is overlapped with the probe beam on a dichroic mirror as shown in Fig. 4.6. The combined
beam is focused into the vacuum chamber with the 50 mm lens.

Figure 5.1(b) shows the calculated radial beam waist for the incident trap beam. As the trap
beam waist at the atoms cannot be measured directly, we use the calculated value of 24 µm in rest
of this thesis. For the beam path after the atoms, an identical optical setup is placed behind the
vacuum chamber. The 50 mm lens collimates the beams again, and the trap light is focused with a
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Figure 5.1: (a) Optical setup to create a one-dimensional trap in vacuum chamber. The trap is overlapped
with the probe beam on two dichroic mirrors, as also indicated in Fig. 4.6. The laser intensity is stabilized
using feedback from a signal detected by a photodiode (PD). (b) Theoretically calculated beam waist along the
optical path. The first lens on the left is the fiber out-coupling lens and the trap light is retro-reflected on the
mirror on the right side. The center 4 𝑓 setup creates a focus at the same spot as the probe beam. An additional
demagnifying telescope allows adjusting the waist size in the focal point.

400 mm lens onto a retro-reflection mirror. This setup allows the creation of the two different trapping
geometries, that are relevant in this thesis. To create a standing-wave trap, the retro-reflection mirror
is positioned such that the reflected beam is focused at the same position in the vacuum chamber. For
the running-wave trap configuration, the trap beam is blocked in front of the retro-reflection mirror.

The electric field of one trapping beam, with polarization vector 𝝐⇄, is given by

𝑬⇄(𝜌, 𝑥) = 𝐸0,⇄𝝐⇄
𝑤0
𝑤(𝑥) exp(− 𝜌

2

𝑤(𝑥)2
) exp (∓𝑖𝑘𝑥) ,

where the direction of the subscript arrow denotes the direction of the beam as introduced in Chapter 3.
→ denotes the case of the incoming beam, and ← denotes the retro-reflected beam. The intensity
profile of the running-wave trap is given by

𝐼rw(𝜌, 𝑥)∝ ∣𝑬→(𝜌, 𝑥)∣2 = 𝐸2
0,→

𝑤
2
0

𝑤
2(𝑥)

exp(− 2𝜌2

𝑤(𝑥)2
) .

For two counter-propagating electric fields, the intensity distribution is given by

𝐼(𝜌, 𝑥)∝ ∣𝑬→(𝜌, 𝑥) + 𝑬←(𝜌, 𝑥)∣2

= ∣𝐸0,→∣2 + ∣𝐸0,←∣2 + 𝐸0,→𝐸0,← [𝝐→𝝐∗← exp(−2𝑖𝑘𝑥) + 𝝐∗→𝝐← exp(2𝑖𝑘𝑥)] . (5.1)

The intensity of the standing wave shows an interference pattern depending on the polarization
products. To form a standing-wave trap, we require 𝝐→𝝐

∗
← = 𝝐∗→𝝐← > 0. In the ideal case of maximal
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interference, the intensity distribution of the standing wave is given by

𝐼sw(𝜌, 𝑥)∝ [𝐸0,→ − 𝐸0,←]
2 + 4𝐸0,→𝐸0,← cos2(𝑘𝑥).

Figure 5.1(a) shows our optical setup to control the polarization of the one-dimensional trapping
beams. The polarization of the incoming beam is set to right-handed circular (resulting in 𝜎

− at the
atoms) with a combination of half-wave plate and quarter-wave plate, as shown in Fig. 5.1(a). To meet
the constructive interference condition for a standing wave in Eq. 5.1, we set the polarization of the
retro-reflected beam as left-handed circular (resulting in 𝜎

− at the atoms) by a second set of wave
plates. If the retro-reflected beam is set to be right-handed circularly polarized instead, it will not
interfere with the incoming beam. This results in a running-wave trap with doubled intensity.

During the experimental cycle, atoms can be transferred into the one-dimensional trap from the
crossed optical dipole trap. The loading of the crossed trap is discussed in Chapter 4. Figure 5.2(a)
shows the timing sequence for the transfer of atoms from the crossed trap into the one-dimensional trap.
The timing sequence is the same for the running-wave and standing-wave trap configuration. After the
evaporation step in Fig. 5.2(a), the incoming beam power of the one-dimensional trap is increased
linearly over 10 ms. The atoms are fully transferred into the one-dimensional trap by ramping the
intensity of the crossed trap to zero linearly over 10 ms. During the ramp-down of the crossed trap,
the power of the one-dimensional trap is also reduced to its final value. Then, we optically pump the
atoms into the target state ∣5𝑆1/2, 𝐹 = 2, 𝑚𝐹 = 2⟩. To verify that optical pumping works in the running-
and standing-wave trap, we use the methods discussed in Chapter 4.

The resulting atom distributions in the different traps are illustrated by the absorption images in
Fig. 5.2(b)-(e), where each image is recorded after sufficient holding time in each trap to capture the
steady state distribution of the atomic cloud. To be specific, Figure 5.2(b) shows the atoms confined
in the crossed trap, while Fig. 5.2(c) shows the atoms in the running-wave trap. Here, the atoms
spread out from the initial position in the crossed trap. The shift of the atomic distribution is caused
by an offset of the waist position of the one-dimensional trap beam by 600 µm from the position of
the crossed optical dipole trap. To avoid the spread of atoms due to the focus offset, the crossed trap
is pulsed on between the Rydberg experiments, as shown in Fig. 4.9(b), for Rydberg experiments
with atoms confined in the running-wave trap. The resulting atom distribution of the running-wave
and the crossed trap is shown in Fig. 5.2(d). Figure 5.2(e) shows the atomic cloud confined in the
standing-wave trap. The shape is very similar to the one in the crossed trap, as the lattice wells prevent
the atoms from spreading along the beam axis. This is only true if the standing-wave trap depth is
higher than the kinetic energy of the atoms, which is the case for all the experiments presented in this
thesis.

In the absorption images presented in Fig. 5.2(b-e), we demonstrate trapping of ground-state atoms
in the one-dimensional trap, in both the running-wave and the standing-wave configuration.

5.1.2 Near-Resonant Coupling between the Rydberg and the 6P3/2 State

In order to create a magic trap, the trapping potential of the Rydberg state can be matched to the
potential experienced by the ground-state atoms. Figure 5.3(a) shows how the 1012 nm light creates
a near-resonant trap for the Rydberg atoms by coupling the Rydberg state ∣𝑛𝑆1/2⟩ to the hyperfine
manifold of the ∣6𝑃3/2⟩ state. The trap beam couples the Rydberg state to one or three hyperfine states
in the ∣6𝑃3/2⟩ states depending on its polarization. The quantization axis of our system, defined by
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Chapter 5 Collective Rydberg Excitations in Magic Traps

Figure 5.2: (a) Timing sequence used to load the atoms from the crossed optical dipole trap (blue) into the
one-dimensional trap (purple). The voltage is proportional to the optical beam powers. (b)-(e) Absorption
image of atoms recorded at 𝑡 = 1460 ms, where (b) the atoms are trapped in the crossed optical dipole trap.
Subsequently, the atoms are transferred into (c) the running-wave trap, (d) the running-wave together with the
crossed trap or (e) the standing-wave trap. See main text for further details. The presented images are averaged
over 20 shots.

the magnetic field along the 𝑦 axis, restricts the trap beam to couple with transitions with 𝜎
+, 𝜎−

or a combination of the two. We define the trap laser detunig as Δ = 𝜔 − 𝜔6𝑛, where 𝜔 is the trap
laser frequency and 𝜔6𝑛 is the transition frequency between the Rydberg state ∣𝑛𝑆1/2⟩ and the state
∣6𝑃3/2, 𝐹 = 3, 𝑚𝐹 = 3⟩. Figure 5.3(b) and 5.3(c) shows the light shift of the two-photon resonance
due to the coupling of the one-dimensional trap laser to the Rydberg state for 𝜎− and 𝜎

+ polarization
respectively. We observe the near-resonant coupling to the expected number of atomic levels as
indicated in Fig. 5.3(a). The spacing between the levels matches with the known 6𝑃3/2 hyperfine
splitting [162]. For the rest of this thesis, we are working with the 𝜎

− polarized trap, and the trap
detunings will be given relative to the transition ∣6𝑃3/2, 𝐹 = 3, 𝑚𝐹 = 3⟩↔ ∣𝑛𝑆1/2, 𝐹 = 3, 𝑚𝐹 = 3⟩ as
shown in Fig. 5.3(a).

The two-photon resonance shift presented here is given by the differential energy shift between the
ground and Rydberg states. To be specific, the resonance features in Fig. 5.3(b) and 5.3(c) are given
by the near-resonant energy shift of the Rydberg state in Eq. 3.29. The energy shift of the Rydberg
state in can be used to match the shift of the ground state. This matching of trap potentials realizes a
magic trapping condition between the two atomic states.

5.2 Magic Wavelength for the Ground-Rydberg transition

Figure 5.3 shows the tunability of the Rydberg state trapping potential. Thereby, we can minimize the
differential light shift between the ground and Rydberg states. The differential light shift is generally
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Figure 5.3: (a) Relevant level scheme of rubidium-87 for the two-photon excitation (red probe, and blue control)
and the near-resonant trap laser (purple). The polarization of the incident trap beam defines the number of
hyperfine states in the ∣6𝑃3/2⟩ manifold the Rydberg state 𝑛𝑆1/2 is coupled to. (b), (c) Two-photon spectroscopy
of the 108𝑆 Rydberg state level shift as function of the trap laser detuning Δ. The horizontal white line marks the
probe detuning required to excite to the Rydberg state in the absence of the trap beam. The three small vertical
lines show the hyperfine splitting between ∣6𝑃3/2, 𝐹 = 1, 2, 3⟩ [162]. We observe one or three avoided crossings,
when the incident trap beam drives (b) 𝜎− or (c) 𝜎+ transitions, respectively. Figure adapted from Ref. [1].

given by

𝛿𝑈(𝒓,Δ) =𝑈𝑛(𝒓,Δ) −𝑈𝑔(𝒓)
=𝑈𝑛(𝜌, 𝑥,Δ) −𝑈𝑔(𝜌, 𝑥), (5.2)

where we decompose the position 𝒓 for parts of the following analysis into the radial coordinate 𝜌 and
the axial coordinate 𝑥. To calculate Eq. 5.2, the ground and Rydberg state trapping potentials from
Chapter 3 are used. Specifically, we derive theoretical magic trapping conditions from the calculated
potentials in Eqs. 3.25-3.27 and Eqs. 3.31-3.33. A similar analysis has been done in Ref. [60] for an
almost perfect periodic potential.

For our experimental parameters and Rydberg state 76𝑆, the differential light shift 𝛿𝑈(𝒓,Δ) in
a running-wave and a standing-wave trap are shown in Fig. 5.4. For the three different trap laser
detunings Δ, the ground state polarizability shown in Fig. 3.2(a) is almost constant, and, thereby, the
ground state trapping potential as well. It follows that the spatial distribution of ground-state atoms is
not changing with the trap laser detuning. For the running-wave trap, the ground-state atoms form a
continuous distribution, and for the standing-wave trap many flat disc-like distributions.

The investigation of the different rows in Fig. 5.4 allows the identification of the trap detuning
at which the differential light shift 𝛿𝑈(𝒓,Δ) is minimized. For the running-wave trap and Rydberg
state 76𝑆, the differential light shift vanishes for all positions at the detuning Δ

rw
76 . For the running

wave, it is possible to find a detuning Δ
rw
𝑛 for any Rydberg state with principal quantum number 𝑛,
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Figure 5.4: Differential light shift between the ground state and the Rydberg state 76𝑆 for different trap
detunings Δ (rows) and trap shape (columns). The light shifts are calculated for the running-wave trap with
Eqs. 3.25-3.27 and for the standing-wave trap with Eqs. 3.31-3.33 for radial position 𝜌 and axial position 𝑥

relative to the trap center. The gray dotted lines highlight the extent of the atomic cloud. They mark the
positions where the mean thermal energy of the atoms is half of the ground state trapping potential. The first
column shows the running-wave case. For the standing wave, we separately show the nonperiodic (–) (second
column) and the periodic (∼) (third column) contribution as well as the full standing wave case (fourth column).
At the detuning Δ

rw
76/2𝜋 = 336 MHz (top row), the differential light shift in the running wave case vanishes at

every position. The same occurs for the periodic contribution at a detuning of Δ∼76/2𝜋 = 548 MHz (bottom row).
In the full standing wave, the differential light shift is minimized at Δsw

76 /2𝜋 = 413 MHz (center row), but does
not vanish everywhere. Figure adapted from Ref. [1].

where 𝛿𝑈
rw(𝒓,Δrw

𝑛 ) = 0. The magic detunings Δrw
𝑛 for the running wave satisfies

𝐷
2
𝑎𝑛

4ℎ̵Δrw
𝑛

+ 𝛼 𝑓 = 𝛼𝑔, (5.3)

where the ground state polarizability 𝛼𝑔 is equal to the Rydberg state polarizability. This magic
condition is only valid under the assumption that the electric field amplitudes do not vary over the
size of the Rydberg atom given in Chapter 3. The scaling of magic detuning with 𝑛 is determined
by the ∝ (𝑛∗)−3/2 scaling of the reduced dipole matrix element 𝐷𝑎𝑛, as discussed in Section 2.2.
Therefore, to make a running-wave trap magic for higher Rydberg states, the trap laser has to be closer
in frequency to the 6𝑃3/2–𝑛𝑆1/2 transition. For detunings larger than Δ

rw
𝑛 , the trap is more attractive

for the ground state than for the Rydberg state. In contrast, the trap is more attractive for the Rydberg
state than for the ground state for smaller detunings.

For the standing-wave trap, the differential light shift can be decomposed into components that
are (non-)periodic along the 𝑥-axis as identified in Section 3.2.2. Figure 5.4 shows the nonperiodic
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5.2 Magic Wavelength for the Ground-Rydberg transition

𝛿𝑈
−(𝒓,Δ), periodic 𝛿𝑈∼(𝒓,Δ) and full standing wave differential light shift 𝛿𝑈sw(𝒓,Δ). The periodic

potential contribution shown in the third column of Fig. 5.4 is zero for the detuning Δ
∼
76 independent

of position. As for the running-wave configuration, we can identify the trap detuning, that fulfills
𝛿𝑈
∼(𝒓,Δ∼𝑛) = 0, as

𝐷
2
𝑎𝑛

4ℎ̵Δ∼𝑛
+ 𝛼 𝑓 ⋅ 𝜃𝑛 = 𝛼𝑔 . (5.4)

The difference between the magic condition for a running wave (Eq. 5.3) and the magic condition for
the periodic potential contribution is the landscape factor 𝜃𝑛 introduced in Section 3.2.2. For low
principal quantum numbers with 𝜃𝑛 ≈ 1, the two conditions are the same, but they differ more for
higher principal quantum number, where 𝜃𝑛 → 0 as already shown in Fig. 3.5(b). The magic detuning
for the periodic potential contribution Δ

∼
𝑛 has to be adapted for trapping a high 𝑛 Rydberg atom in the

periodic potential.
While it is possible to zero the differential light shift for a perfect periodic potential, this is not the

case for the standing-wave trap used in the experiment. For a standing-wave trap, the differential light
shifts are not only given by the periodic potential contributions 𝛿𝑈∼(𝒓,Δ), but also the nonperiodic
contributions 𝛿𝑈

−(𝒓,Δ). The fourth column in Fig. 5.4 shows the full standing wave differential
light shift 𝛿𝑈sw(𝒓,Δ), which is a sum of the periodic and nonperiodic contributions for Rydberg
state 76𝑆. There is no trap detuning Δ, where the differential light shifts vanish for all positions.
Therefore, we cannot find an analytic condition for the standing-wave trap magic detuning Δ

𝑠𝑤
𝑛 that

fulfills 𝛿𝑈sw(𝒓,Δ) = 0 independently of position. It is however possible to minimize the differential
light shifts across the atomic cloud distribution, as visible in the middle row of Fig. 5.4.

To determine such optimal detunings, we turn to an experimental investigation for the running-wave
and the standing-wave trap in the next section.

5.2.1 Measuring the Differential Light Shift on the Two-Photon Resonance

To investigate the effects of differential light shifts, we perform spectroscopy measurements. They
can be understood as probing of the ground-to-Rydberg transition frequency for a single atom in the
atomic cloud.

For the standing-wave configuration, we investigate how the two-photon resonance between ground
and Rydberg state shifts as a function of the trap laser detuning Δ, as illustrated for Rydberg state 70𝑆
in Fig. 5.5(a). The probe detuning to address the two-photon Raman resonance Δ𝑝,R are extracted
with Lorentzian fits from spectroscopy measurements similar to the one shown in Fig. 4.12(c) with
Δ𝑐 = −2𝜋 × 100 MHz. The gray horizontal line in Fig. 5.5(a) shows the probe detuning required
to drive the two-photon Raman transition in a measurement with un-trapped atoms. The magic
detuning Δ

sw
70 for the standing-wave trap can be identified as the detuning where the red data points

match the free-space resonance line. At this trap detuning, the trapping potentials for the atoms in
the ground and Rydberg states 70𝑆 are equalized. This experimentally determined magic detuning
can be compared to the detunings identified by the analytical conditions in Eq. 5.3, and Eq. 5.4. The
magic detunings for the running wave Δrw

70 and the periodic potential Δ∼70 are marked as the blue and
the yellow line, respectively.

From the experimental results of the standing wave, it can be seen that the measured optimal
detuning is between the two analytical magic conditions. In an independent measurement, we identify
the trap detuning Δ = 2𝜋×453(1)MHz where the two-photon Raman resonance becomes independent

59



Chapter 5 Collective Rydberg Excitations in Magic Traps

Figure 5.5: (a) Two-photon Raman resonance Δ𝑝,R to Rydberg state 70𝑆 as function of trap detuning Δ, for
atoms confined in the standing-wave trap. The red data points are measured similar to Fig. 5.3(a), with each
data point extracted as the resonance center along the probe detuning axis. The higher trap detuning was set by
monitoring the trap laser wavelength with a wavelength meter, while the lower trap detunings were measured
after stabilizing the trap laser onto the reference cavity discussed in Section 4.1. The solid gray horizontal line
shows the probe detuning for the two-photon Raman resonance Δ𝑝,R,0 measured with free-space atoms. The
gray dashed vertical line marks the resonance of ∣6𝑃3/2, 𝐹 = 3, 𝑚𝐹 = 3⟩ for the 𝜎

− polarized trap. The blue
and yellow dashed lines mark the theoretical magic detuning of the running wave Δ

rw
70 = 2𝜋 × 436 MHz and

the periodic potential Δ∼70 = 2𝜋 × 736 MHz, respectively. (b) Two-photon Raman resonance to the Rydberg
state 70𝑆 for different standing-wave trap beam powers. The atoms are confined in the standing-wave trap
and the trap laser wavelength is set to a detuning of Δ = 2𝜋 × 453(1)MHz. The dashed lines are Gaussian
fits to visualize that the two-photon Raman resonance between the ground and Rydberg states does not shift
with increasing beam power. (c) Two-photon Raman resonance shift for Rydberg state 54𝑆 with respect to
the free-space-atoms resonance Δ𝑝,R,0. The blue diamonds and the red circles show the running-wave and
standing-wave trap measurements, respectively. The gray shaded area shows the standard deviation of the
measurement with free-space atoms.

of the trap beam power. At this detuning, Figure 5.5(b) shows that the two-photon Raman resonance
for the Rydberg state 70𝑆 becomes independent of the trap beam power. It is possible to find such an
optimal detuning for all Rydberg states.

The shift of the two-photon Raman resonance can be used to measure the individual atom differential
light shift created by the running-wave and the standing-wave trap. Figure 5.5(c) shows how the
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5.2 Magic Wavelength for the Ground-Rydberg transition

two-photon Raman resonance frequency depends on the trap detuning for the Rydberg state 54𝑆. To
make the resonance shift measurements in the two different traps comparable, the beam power is
adjusted to have similar maximum light intensities at the atoms. Nevertheless, we observe a different
Δ-dependency of the two-photon Raman resonance for the two trap configurations. The difference
can possibly be attributed to an incorrect consideration of the losses in the retro-reflection beam path.
For both trap configurations, the two-photon Raman resonance coincides with the un-trapped atom
resonance for the same trap detuning Δ. Investigation of the effects of differential light shifts on
collective Rydberg excitations require the consideration of differential light shift influencing effectively
many atoms across the atomic ensemble.

5.2.2 Estimation of the Differential Light Shift across the Atomic Cloud

For the determination of the magic detunings for collective Rydberg excitations, it is necessary to
take into account the spatial distribution of the atoms in the potential landscape given by the trapping
beam shape. As already discussed, it is only possible to cancel differential light shifts independently
of position in the running wave and in the periodic potential case. For both, we derived analytical
expressions for the magic detunings (Eqs. 5.3 and 5.4). In this section, we turn our attention to
the case of the full standing wave by considering the combined nonperiodic and periodic potential
contributions. Therefore, we consider the trapping beam shapes and the spatial atom distribution, and
discuss two methods to estimate the differential light shift across the atomic ensemble.

A standing-wave trap at detuning Δ
∼
𝑛, where there is no differential light shift from the periodic

potential contribution, gives rise to a differential light shift arising purely from the nonperiodic
potential 𝑈−𝑞 (𝒓,Δ). This residual differential light shift 𝑈−residual(𝒓,Δ) is given by

𝑈
−
residual(𝒓,Δ∼𝑛) =𝑈−𝑛 (𝒓,Δ∼𝑛) −𝑈−𝑔 (𝒓) = −

𝛼 𝑓

4
(1 − 𝜃𝑛) [𝐸2

→(𝒓) + 𝐸2
←(𝒓)] .

For Rydberg states with low principal quantum number (𝑛 < 25), this differential light shift contribution
vanishes because 𝜃𝑛 ≃ 1. In the case of high principal quantum numbers with 𝜃𝑛 significantly smaller
than one, the residual potential only vanishes in the trivial case of no trapping laser (𝐸→(←)(𝒓) = 0).
The residual differential light shift from the nonperiodic potential 𝑈−residual(𝒓,Δ) can be reduced, if the
addressed atoms only sample the center part in the trapping beam Gaussian envelopes 𝐸→(←)(𝒓) given
in Eq. 3.20. Thereby, the total differential light shift becomes independent of the position, and the
common light shift for all atoms across the ensemble does not influence the collective state coherence.

For our experimental setup, not all the positions within the Gaussian envelope of the trapping beam
𝐸→(←)(𝒓) have to be considered for the residual differential light shift calculation. In the following,
we separately discuss the case for the axial and the radial direction. In the axial direction, 𝐸→(←)(𝒓)
has to be compared to the size of the atomic cloud. Figure 5.6(a) and 5.6(b) show the small variation of
the trapping beam radius 𝑤𝑡(𝑥) over the length scale of the atomic cloud. The atom cloud distribution
is given by the shape of the crossed trap shown in Fig. 4.5. The Rayleigh length of the trapping beam
𝑋𝑅 = 1365 µm is much larger than half the cloud length 40.8 µm. Therefore, the intensity variation in
the axial direction is negligible for the calculation of differential light shifts.

In the radial direction, the atoms that contribute to the collective excitation are only those that are
addressed with the two-photon excitation lasers. The probe beam with its smaller waist determines the
relevant radial length scale. Figure 5.6(c) shows the normalized intensity of the trap and the probe
beam in their focal plane. The square of the electric field amplitude 𝐸

2
→(←)(𝒓) drops in the radial
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Figure 5.6: (a) Beam waist radius of probe (red, dashed) and trap (purple, solid) laser, with their respective 1/𝑒2

waist radii of 𝑤𝑝,0 = 5 µm and 𝑤𝑡 ,0 = 24 µm. (b) The axial extent of the atomic cloud with length 𝐿 = 81.6 µm.
(c) Normalized radial intensity distribution for the probe beam (red), and the trapping beam (purple). The latter
is shown for waist radii 𝑤𝑡 ,0 and three times 𝑤𝑡 ,0. The intensity is calculated from Eq. 3.20 in the focal plane.
The dashed lines mark the position at 𝜌 = −𝑤𝑝,0 and the dotted lines mark the position at 𝜌 = −2 ⋅ 𝑤𝑝,0, as well
as the respective normalized intensity for the trap beam waist 𝑤𝑡 ,0 in the experiment.

direction to 92 % at the probe radius 𝑤𝑝,0. This probe radius covers 95 % of the atoms in one direction.
At a radius of 2𝑤𝑝,0, the intensity drops to 71 %, while including with 99.7 % a larger fraction of the
atoms. This intensity variation can be reduced by choosing e.g. choosing a larger trap beam waist, as
indicated in Fig. 5.6(c). However, a larger trap beam waist results in a reduced atomic density, when
assuming that the same amount of atoms is loaded initially. Therefore, a trade-off depending on the
requirements for specific experiments has to be made. For the trap beam waists in our experiment, we
are limited by spatial constraints in the optical setup.

In order to understand the effects of differential light shifts, we now introduce two methods to
estimate the differential light shifts created by trapping beams of any shape.

First, one can estimate the differential light shift across the atomic cloud by calculating the standard
deviation over all spatial positions, as done in Ref. [1]. Based on the given experimental geometry,
only a subset of atoms should be included into the calculation. For our experimental setup, only atoms
within the radial waist of the probe beam are contributing to the collective excitations, and, hence, to
the variation of the differential light shift. Inside this excitation volume, we consider furthermore
only positions where 𝑈𝑔(𝜌, 𝑥) ≤𝑈𝑔(0, 0) + 2 ⋅ 𝑘𝐵𝑇 . This condition is motivated by the fact that the
mean kinetic energy of the atoms, here approximated by 𝑘𝐵𝑇 , limits the volume where the atoms are
moving. Figure 5.7(a) shows the standard deviation of the differential light shift 𝛿𝑈std(𝒓,Δ) in Eq. 5.2
with the discussed considerations. The vertical dashed lines mark the positions of the analytically
determined magic conditions in Eq. 5.3 and 5.4. The standard deviation of the differential light shift in
the running wave and periodic potential vanishes at these trap detunings. The standing wave optimal
detuning lies in between the dashed lines at Δsw

76 . Note that the standard deviation for our experimental
parameters is not zero.

In the second method, we extend the analysis discussed in the previous paragraph by assigning a
weight to each differential light shift contribution before calculating the standard deviation, which
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Figure 5.7: (a) Calculated standard deviation of the differential light shift between ground state and Rydberg
state 76𝑆. For the parameters of our experiment, only differential light shifts inside the indicated volumes in
Fig. 5.4 are taken into account. The two detunings calculated from the analytical magic conditions in Eq. (5.3)
and Eq. (5.4) are shown as vertical dashed lines. The optimal detunings for the running wave (blue), the standing
wave (red), and the periodic potential (yellow) are where the respective standard deviation is minimized. These
are denoted by Δ

rw
76 for the running wave, Δ∼76 for the periodic potential, and Δ

sw
76 for the full standing wave. (b)

Standard deviation calculated with weighted contribution for each position as described in the main text. The
red solid lines are calculated for different trap beam waists. The red dashed line marks the optimal detuning for
the trap beam waist implemented in the experiment. Figure (a) adapted from Ref. [1] and (b) adapted from
Ref. [114].

follows the idea of Ref. [163]. Each position is weighted by the probe beam amplitude and a Boltzmann
distribution with a given temperature 𝑇 [114]. Therefore, we write the weighted differential light shift
as

𝛿𝑈weighted(𝒓,Δ) = 𝑝(𝒓, 𝑤𝑝,0) ⋅ 𝑛(𝒓, 𝑇) ⋅ [𝑈𝑛(𝒓,Δ) −𝑈𝑔(𝒓)] ,

where 𝑝(𝒓, 𝑤𝑝,0) is a weighing factor defined by the probe beam shape and 𝑛(𝒓, 𝑇) is the atomic
density distribution of ground-state atoms. The weighing factor 𝑝(𝒓, 𝑤𝑝,0) is a normalized Gaussian
beam as in Eq. 3.20. By the second factor, we approximate the thermal distribution of the ground-state
atoms in the respective potential landscape. The weights for each position in the ground state potential
landscape are given by a Boltzmann distribution as [164]

𝑛(𝒓, 𝑇) =
exp (−𝑈𝑔(𝒓)/(𝑘𝐵𝑇))

∫ 𝑑𝒓3 exp (−𝑈𝑔(𝒓)/(𝑘𝐵𝑇))
.

The standard deviation over this weighed differential light shift is shown in Fig. 5.7(b) for the different
trap configurations. As for the calculation with simpler approximations in Fig. 5.7(a), the standard
deviation of the running wave and the periodic potential are minimized at the analytic magic conditions.
Comparison of Fig. 5.7(a) and 5.7(b) shows that detuning where the standard deviation is minimized
shifts towards the periodic potential, when the positions are weighed. In the rest of this thesis, the
detuning Δ

sw
𝑛 refers to trap detuning with the lowest standard deviation calculated by the weighed

differential light shift contributions.
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Figure 5.7(b) shows the standard deviation of the differential light shift for different trapping beam
waists. As the trapping beam waist is increased, the optimal detuning in the standing-wave trap Δ

sw
76

shifts towards the magic detuning in the periodic potential Δ∼76. This is caused by a more homogeneous
trap intensity across the probe beam, as presented in Fig. 5.6(b). The increased trap beam waist
reduces the contribution of the nonperiodic potential to the total differential light shift.

5.2.3 Determination of Magic Detunings by Photon Storage Experiments

As shown in Fig. 5.7(b), the exact shape of the trap determines the magic detunings. In order to
analyze our theoretical calculation, the trap-induced decoherence of the collective Rydberg excitations
introduced in Section 2.1.1 is measured. For this investigation, the photon storage and retrieval
experiments described in Section 4.3.2 are used. The differential light shifts in the running- and
standing-wave trap cause a dephasing in the retrieval efficiency 𝜂(𝑡𝑠) as discussed in Section 2.1.1.

The magic detuning can be determined as the trap detuning, that allows the longest coherence times
in the photon storage and retrieval experiments.

Figure 5.8(a) and (b) show the photon retrieval efficiency for two different trap detunings, where we
normalized the efficiency to the value for the shortest storage time of 0.5 µs. The decays are not just
simple exponential or Gaussian decay curves, but have features of additional oscillations, which will
be discussed in Section 5.3. Here, we focus on an overall damping of the retrieval efficiency and use a
simple exponential fit with the function

𝑓 (𝑡𝑠) = 𝐴 ⋅ 𝑒−𝑡𝑠/𝑡𝑐

to extract a coherence time 𝑡𝑐 as single parameter.
In Fig. 5.8(c), the measured coherence time 𝑡𝑐 is presented as function of trap detuning Δ for the

Rydberg state 76𝑆. For the running wave, the coherence times are longest at the calculated magic
detuning Δ

rw
76 . The measurements in the standing-wave trap do not show the longest coherence times

around the calculated magic detuning for a periodic potential Δ∼76. Instead, it matches better with the
detunings having the lowest standard deviation of differential light shift calculated for our experimental
parameters.

In the photon storage and retrieval experiments, it is only possible to identify an optimal detuning
with minimized differential light shift dephasing, if all other dephasing mechanisms are comparably
small. The only relevant detuning dependent dephasing mechanism is the decay of the Rydberg state
due to the near-resonant coupling with the state 6𝑃3/2. For our parameters, the coherence times are
not limited by the lifetime of the Rydberg state as indicated in Fig. 5.8(c). Furthermore, the coherence
time can be limited due to high atomic densities, as will be discussed later in detail in Section 5.3.

Figure 5.9(a) shows the coherence times measured for different number of atoms confined in a
standing-wave trap. These measurements are performed with Rydberg state 89𝑆. The three datasets
are labeled with an optical density measured in the crossed dipole trap, before transferring the atoms
into the magic trap. By independently measuring atom number and temperature from absorption
images, we estimate a peak atomic density in the standing wave potential. The atomic densities
for the three presented datasets are 4.0(7) × 1012 cm−3, 7(1) × 1012 cm−3, and 17(1) × 1012 cm−3,
respectively. At high atomic densities, the optimal detuning washes out and is harder to determine.
Therefore, we generally adjust the number of loaded atoms such that the density caused dephasing
does not limit the determination of the optimal detuning.
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Figure 5.8: (a), (b) Normalized photon retrieval efficiency as function of storage time 𝑡𝑠. The atomic cloud is
confined in the running-wave (blue) and a standing-wave (red) trap. The trap is set to the optimal detunings
derived from the analysis shown in Fig. 5.7 for (a) the running wave case with Δ = Δrw

76 and (b) the standing
wave case with Δ = Δ∼76. The dashed lines show exponential fits to extract respective coherence times 𝜏𝑐. (c)
The coherence times 𝜏𝑐 measured in the running-wave and standing-wave trap as function of the trap laser
detuning Δ. The vertical dotted and dashed lines show the optimal detunings from the analysis in Fig. 5.7. The
gray curve shows the Rydberg state lifetime, that includes the effective lifetime due to blackbody radiation and
the near-resonant coupling to the 6𝑃3/2 state. Figure adapted from Ref. [1].

In contrast to the spectroscopy measurements in Section 5.2.1, the photon storage and retrieval
experiments show a clear difference between the running-wave and the standing-wave trap. The two
trap configurations differ experimentally by the amount of power in the retro-reflection beam.

Figure 5.9(b) shows the coherence time for different power balances in the optical trap for Rydberg
state 54𝑆. The power of the retro-reflection is adjusted to change from a running wave (where
𝐸←/𝐸→ = 0) to our standing wave (where 𝐸←/𝐸→ = 0.87). For a very small amount of retro-reflected
light, the coherence time improves, not only around the running wave case, but also around the standing
wave optimal detuning. In such an imbalanced standing wave, only the very cold atoms are trapped in
the periodic contribution of the standing-wave trap. Their contribution to the retrieval efficiency gives
rise to the prolonged coherence times around Δ

sw
54 . In contrast, the hotter atoms are not confined in the

periodic contribution and experience a running-wave trap with a different optimal detuning. We can
resolve a difference in optimal detuning between the running-wave and the standing-wave trap for the
measurement with Rydberg state 76𝑆 (Fig. 5.8(c)) and with Rydberg state 54𝑆 (Fig. 5.9(b)). From
these measurements, we conclude that we can find magic detunings over a large range of principal
quantum numbers.

The two magic conditions in Eq. 5.3 and Eq. 5.4 both scale with the reduced dipole matrix element
𝐷𝑎𝑛 ∝ (𝑛∗)−3/2. For Rydberg states with higher principal quantum number 𝑛, we expect the optimal
detunings Δ

trap
𝑛 to be closer to the 6𝑃3/2 state. This is also visible in Fig. 5.8(c), Fig. 5.9(a) and

Fig. 5.9(b).
Figure 5.10(a) shows the theoretically expected and experimentally determined optimal detuning

as function of 𝑛 for the different trap configurations. The scaling of the optimal detunings with the
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Figure 5.9: (a) Coherence time 𝑡𝑐 as function of trap detuning Δ for three different atomic densities. The
atomic density is given as optical depth (OD), see the main text for an estimation of peak atomic density. The
measurements are performed with atoms confined in the standing-wave trap and excited to Rydberg state 89𝑆.
(b) Coherence time 𝑡𝑐 for Rydberg state 54𝑆 as function of trap detuning Δ for different ratios 𝑏 = 𝐸

←
/𝐸
→

of
incoming and retro-reflected trap beam electric field. The vertical dotted and dashed lines mark the optimal
detunings found by the lowest differential light shift standard deviation for the respective trap configuration, see
Fig. 5.7. Note the two different 𝑥-axis scales in (a) and (b).

principal quantum number is given by the reduced dipole matrix elements 𝐷𝑎𝑛. For the standing-wave
trap in Ref. [60], this scaling of the reduced dipole matrix elements with principal quantum number
has been observed. The measured optimal detunings show the same trend as the magic detunings for
the running-wave trap (Eq. 5.3) and the periodic potential (Eq. 5.4), where the difference between the
two detuning conditions is given by the landscape factor 𝜃𝑛.

To emphasize the difference between the running-wave and standing-wave trap, an effective
polarizability 𝛼

trap
𝑛 is calculated as

𝛼
trap
𝑛 ∶= 𝐷

2
𝑎𝑛

4ℎ̵Δtrap
𝑛

. (5.5)

The effective polarizability removes the (𝑛∗)−3/2 scaling of the dipole matrix elements. Figure 5.10(b)
shows the effective polarizability 𝛼

trap
𝑛 as function of principal quantum number 𝑛. The difference in

effective polarizability between the running-wave and the standing-wave trap is directly visible for
higher (𝑛 > 30) principal quantum numbers. To quantify this difference, the analytically determined
magic conditions for the running wave and periodic potential can be reformulated with 𝛼

trap
𝑛 (Eq. 5.5)

to

𝛼
rw
𝑛 = 𝛼𝑔 − 𝛼 𝑓 (5.6)
𝛼
∼
𝑛 = 𝛼𝑔 − 𝛼 𝑓 ⋅ 𝜃𝑛, (5.7)

where the difference follows the landscape factor 𝜃𝑛 in Eq. 3.30.
One can understand the difference by considering the size of the Rydberg atom with respect to

the standing wave periodicity. In order to compare the two, the top axis in Fig. 5.10(b) shows the
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Figure 5.10: Scaling of the magic detunings in the different traps as function of principal quantum number
𝑛. (a) Optimal detunings Δtrap

𝑛 in the running-wave (blue, circles) and standing-wave trap (red, squares) for
different Rydberg states. The solid curves show the magic detunings for the running-wave (blue, Eq. 5.3) and
periodic potential (yellow, Eq. 5.4). The red dashed line is the optimal detuning with the lowest standard
deviation across the atomic cloud as shown in Fig. 5.7(a). The top axis shows the Rydberg electron orbital
diameter 2 ⋅ ⟨𝑟⟩ in Eq. 2.11 for the respective principal quantum number. The standing-wave trap periodicity of
506 nm is marked by the gray vertical line. The two schematic figures show the electron radius 𝑟𝑒 for 𝑛 = 25
and 𝑛 = 76 in comparison to the standing wave. (b) Effective polarizability from Eq. 5.5 for the measured and
calculated data in (a) as a function of principal quantum number. Figure adapted from Ref. [1].

Rydberg electron orbital diameter 2 ⋅ ⟨𝑟⟩, and the solid vertical line marks the ∼ 506 nm lattice spacing.
For smaller Rydberg state with 𝑛 < 30, the electron explores only a fraction of the standing wave
as sketched in Fig. 5.10(a) for 𝑛 = 25. However, for Rydberg states with 𝑛 > 30, the two effective
polarizabilities become significantly different.

In Fig. 5.10(b), the standing-wave periodicity can be seen as a ruler for the size of the Rydberg
electron wave function. Our measurements highlight that the exact trapping potential modifies the
effective polarizability for Rydberg states with high principal quantum number.

5.3 Challenges for Photon Storage Experiments with Atoms in the
Standing-Wave Trap

The dynamics of the retrieval efficiency as function of the storage duration, given by 𝜂(𝑡𝑠) in Eq. 2.6,
depend on the time evolution of the collective state ∣𝜓(𝑡𝑠)⟩. In the standing-wave trap, the retrieval
efficiency shows different dynamics compared to the Gaussian-shaped decay envelope given by the
thermal motion of the atoms, as visible in Fig. 5.8(a) and 5.8(b).

In this section, we discuss two effects that add additional oscillations. For the experiments presented
here, the trap detuning is set to the experimentally determined magic value as described in the previous
section.
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Figure 5.11: Photon retrieval efficiency for atoms in (a) free space, (b) partly confined in the standing-wave trap
and (c) fully confined in the standing-wave trap. For the free space experiment, the crossed trap is pulsed as
already shown in Fig. 4.9(b), while the standing-wave trap is set to zero intensity. The data presented in (b)
and (c) are measured by increasing the intensity of the standing-wave trap while decreasing the intensity in
the crossed trap. The inserts are schematics of the fraction of atoms in free space compared to confined in the
standing wave. The dashed line is a Gaussian decay model fitted to the respective data, which are measured for
Rydberg state 61𝑆.

5.3.1 Atom Oscillations in Lattice Wells

The first effect that we discuss is the periodic motion of the ground-state atoms in the standing-wave
trap. The ground-state atoms in the experiment have a finite temperature, 𝑇 = 2 µK. The trap depth in
typical experiments is 13 µK 𝑘B. This results in an axial trap frequency (Eq. 3.28) of 𝜈ax = 52 kHz.
The resulting atomic oscillation period is 19 µs, which is on the timescale of the storage durations in
our typical experiments. The exact oscillation period depends on the trap depth (Eq. 3.28), and the
oscillation is expected to modify the dynamics.

Figure 5.11 shows the emergence of the modified temporal dynamics in the photon retrieval
efficiency, when increasing the standing-wave trap intensity. For a one-dimensional trap with only
a small periodic part, as indicated by the schematic in Fig. 5.11(b), the initial decay is still well
described by the Gaussian envelope. However, a non-vanishing retrieval efficiency for storage durations
longer than 20 µs emerges, that is attributed to a small fraction of very cold atoms confined in the
standing-wave potential wells. The decay of retrieval efficiency with storage duration is not well
described by the Gaussian-shaped envelope expected for a thermal atom cloud with the highest
possible intensity in the retro-reflected beam, as sketched in Fig. 5.11(c). The temporal dynamics
are given by motional rephasing of the atom cloud, which has been observed for photon storage and
retrieval experiments with collective states involving atomic ground states [43, 70] as well as Rydberg
states [60].

Next, we investigate the oscillation behavior of the retrieval efficiency depending on the trap depth
and, hence, the trap frequency. Figure 5.12(a) shows the two photon storage and retrieval experiments
for different depths of the standing-wave trap. The decays show oscillations with tens of microsecond
periods, as well as a faster one on the microsecond timescale. To extract both oscillation periods, we
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first fit a model as

𝜂(𝑡𝑠) = exp(−𝑡𝑠/𝜏) ⋅ [𝐴 + 𝐵 ⋅ sin(2𝜋𝜈ax𝑡𝑠 + 𝜙ax) +𝐶 ⋅ exp(−𝑡𝑠/𝜏dimer) ⋅ sin(2𝜋Δdimer𝑡𝑠 + 𝜙dimer)] ,
(5.8)

where 𝜏 is an overall decay constant, 𝜈ax and 𝜙ax are the axial trapping frequency and an initial phase.
The last term arises from additional excited states that lead to the fast oscillations in Fig. 5.12(a)
visible for the deeper trap depth. Their origin will be discussed in the next section. To make the
slower oscillation visible, an exponential fit is subtracted from the data and the residuals are shown
as the open markers. The frequency components from the residual data are extracted with a Fourier
transform and presented for the different trap depths in Fig. 5.12(b). The slow oscillation component
( 𝑓Fourier < 100 kHz) increases in frequency with trap depth and is associated with the periodic atomic
motion in the standing-wave potential wells. The secondary peak at around 500 kHz corresponds to
the fast oscillations.

The axial trap frequency of the standing-wave trapping potential 𝜈ax can be determined independently
by parametric heating [157, 165]. For that purpose, we modulate the standing-wave trap intensity with
a given modulation frequency 𝑓mod.

Figure 5.12(c) shows how the probe beam transmission through the atomic cloud changes as function
of modulation frequency. The transmission is a measure for the atom number inside the standing-wave
trap. When the standing-wave well depth is modulated at twice the trap frequency 𝜈ax, the atoms are
heated whereby some atoms escape from the trap and hence reduce the probe beam absorption. In
order to measure the harmonic part of the standing-wave potential, the standing-wave trap is during the
atom cloud preparation lowered such that most of the hot atoms can escape and only the coldest atoms
remain. The intensity modulation is applied for 10 ms to an atomic ensemble with a temperature of
approximately 𝑇 = 1 µK, which is small compared to typical trap depths in our experiments.

To compare the different methods for measuring trap frequencies described above, the obtained trap
frequencies as function of standing-wave trap depth 𝑈0 are shown in Fig. 5.12(d). The figure gives the
trap frequency extracted from fits like the ones in Fig. 5.12(a), from Fourier spectra like in 5.12(b) and
from parametric heating as shown in panel 5.12(c). The trap frequencies extracted from the photon
storage and retrieval match well with the theoretical trap frequency, that is calculated with Eq. 3.28.
The parametric heating method likely underestimates the trap frequencies, as the addressing of the
highest trap frequencies does not necessarily heat the atoms enough to cause significant atom loss.
Instead, lower trap frequencies address hotter atoms, that are then more likely to leave the trapping
potential.

In essence, the periodic motion of the atoms in the standing-wave potential wells strongly modifies
the temporal dynamics in the storage and retrieval process. In Ref. [70], the atoms are considered to
perform a classical motion in the standing-wave potential. This model does not apply when the two
states involved experience different trapping potentials. The different trap potential for atoms in the
ground and Rydberg states has been considered in Ref. [60], where the retrieval efficiency is modeled
by quantizing the motion of the ground and the Rydberg atoms inside the optical standing-wave trap.

5.3.2 Formation of Rydberg Molecules in Dense Atom Clouds

In addition to the thermal rephasing described in the previous section, the photon storage and retrieval
is modified by the increased local density inside the standing-wave trap wells. The large density results
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Figure 5.12: (a) Photon storage and retrieval experiment at 61𝑆 for two different standing-wave trap depth 𝑈0.
The filled markers are the retrieval efficiency to which a function (dashed) with the slow lattice oscillations and
secondary faster oscillations is fitted. The open markers are the same data with an exponential fit subtracted,
see main text for details. (b) Fourier spectrum of the open marker data in (a) for different trap depths. The
center positions of two different Fourier components are extracted by Gaussian fits (dashed lines). (c) Probe
beam transmission through the atomic cloud as function of the modulation frequency 𝑓mod of the standing-wave
trap depth 𝑈0. The dashed lines show Lorentzian functions to determine the center frequency. (d) Axial trap
frequency 𝜈ax in the standing-wave trap as function of the trap depth 𝑈0. The trap frequency from the photon
storage experiments is extracted from the fits in (a) (green diamonds) and from the center Fourier frequency
in (b) (orange open triangles). The trap frequency from parametric heating in (c) is determined for two different
atom temperatures (blue circles and red squares), see main text for details. The black solid curve shows the
expected trap frequency.

in the formation of ultralong-range Rydberg molecules [166, 167]. These molecules are created when
one or more ground-state atom form bound states with a Rydberg atom, where the bound states arise
from a scattering-induced interaction between the ground-state atoms and the Rydberg electron. The
ultralong-range Rydberg molecules form in very dense media, where the mean distance between atoms
is comparable to the Rydberg electron radius.

In this section, we discuss how these Rydberg molecules influence the dynamics of the photon
retrieval efficiency.
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Figure 5.13: (a) Photon retrieval efficiency measured for Rydberg state 61𝑆 in a dense atomic cloud. The data is
the same as the first 12 µs in Fig. 5.12(a). The dashed line shows a fit (Eq. 5.8) to extract the dimer frequency
Δdimer. The dimer frequency is the difference in binding energy between the Rydberg atom and Rydberg dimer,
as shown in the schematic. (b) Two-photon Raman transition, with excitation resonances of Rydberg atoms,
dimers and trimers. The resonance centers are extracted by a triple Lorentzian fit (dashed line).

Figure 5.13(a) shows the fast oscillation visible in the first 12 µs of the photon storage and retrieval
experiments in Fig. 5.12(a). The oscillation arises from the interference between these two excitation
paths ways, where the Rydberg dimer is an additional state detuned by Δdimer from the two-photon
resonance [168].

The two-photon transition with two excited states is sketched in Fig. 5.13(a). It should be noted,
that the oscillation in the efficiency originates from the same kind of excitation path interference as
presented for multiple populated ground states in Fig. 4.14. With the fit of Eq. 5.8, the frequency of the
fast oscillation is extract as Δdimer = 514(3)kHz. This is similar to the value measured in Ref. [168].
The dimer frequency Δdimer determines the Rydberg dimer binding energy, given by −ℎΔdimer, where
the scaling with the principal quantum number is approximately given as Δdimer ∝ (𝑛∗)−6.3 [168,
169]. The ultralong-range molecules can be detected in probe beam transmission measurements
independently of the photon storage and retrieval experiments.

Figure 5.13(b) shows the transmission spectrum for Rydberg state 61𝑆, where the excitation
resonances for the Rydberg atom and Rydberg dimer are separated by Δdimer. The secondary red-
shifted resonance at 2 × Δdimer is related to the formation of trimer states [170], where the Rydberg
electron interacts with two ground-state atoms. A fit of three Lorentzian line shapes to the data gives a
dimer frequency of Δdimer = 496(12)kHz, that is close to the value extracted from the photon storage
and retrieval measurement.

Despite the motional rephasing and ultralong-range Rydberg molecule formation, the standing-wave
trap enables the storage of single photons in collective Rydberg excitations for tens of microseconds.
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CHAPTER 6

Conclusion and Outlook

In this thesis, I presented a theoretical and experimental study on magic trapping conditions for atoms
involved in collective ground-state–Rydberg-state excitations, which are used for photon storage in an
ensemble of ultracold atoms. The main focus of my work was to investigate how the geometry of
the optical trap influences the ensemble dephasing rate and how the wavelength corresponding to the
magic trapping condition is determined by the trap configuration.

Before discussing the magic trap, I introduced the theoretical concepts used throughout the thesis
and described the experimental apparatus [61, 129, 152, 171]. A significant part of the work involved
reconstructing the experimental apparatus following its relocation from the University of Southern
Denmark to the University of Bonn in May 2021.

This thesis documents key aspects of the setup characterization and outlines selected steps in the
preparation of an ultracold ensemble of rubidium-87 atoms. The preparation sequence includes
trapping of ultracold rubidium atoms in various optical trap geometries and aligning the atomic cloud
with the focus of the probe beam. As the final step in the atom cloud preparation, the atoms were
optically pumped into a single magnetic substate. Successful state preparation, with 99.5 % of the
atoms in the desired substate, was independently confirmed through transmission measurements and
photon storage and retrieval experiments.

In addition to reconstructing the experimental setup, I implemented a new one-dimensional optical
trap that can be operated in two configurations, either as a running-wave trap or as a standing-wave
trap. The standing-wave configuration is particularly valuable, as it enables spatial confinement of
atomic motion along the axis of the trap, which is relevant for suppressing motional dephasing in
collective Rydberg excitations.

The trap is formed using a laser with a wavelength of 1012 nm. This wavelength is chosen because
it forms a far-off-resonant dipole trap for the rubidium ground state. The laser can be tuned close to
resonance with the transition between the 6𝑃3/2 state and a Rydberg state. This allows the creation
of a near-resonant dipole trapping potential for that Rydberg state, while the ground state potential
remains essentially unchanged.

By varying the detuning from the transition to the 6𝑃3/2 state, the optical potential experienced by
the Rydberg state can be strongly modified. To identify the magic trapping condition for the ground
and Rydberg states—that is, when both optical potentials are equal—I calculated them as a function
of laser detuning.

I used photon storage and retrieval experiments to measure the magic wavelength for a range of
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principal quantum numbers (45 ≤ 𝑛 ≤ 94). The experimentally determined values were in agreement
with the calculated ones. We were able to experimentally observe distinct magic wavelength for
the two trap geometries [1]. The difference in magic wavelengths between the running-wave and
standing-wave traps is attributed to the repulsive force on the Rydberg atoms, which arise from
the ponderomotive potential acting on the almost-free Rydberg electron within the given potential
landscape [57, 58].

Using the standing-wave configuration, we observed 20 µs ground-to-Rydberg coherence time,
similar to what has been reported by others [60]. This confirms that the standing-wave trap effectively
restricts atomic motion, thereby reducing motional decoherence and highlighting the advantage of
magic trapping.

The demonstration of the dependence of the magic wavelength on the trap geometry that I presented
in this thesis shows that trapping of Rydberg atoms is not straightforward. One has to take the Rydberg
electron wave function into account, when designing optical traps that are on the same size-scale as
the wave function. The investigation of how to create magic traps for ground and Rydberg states can
be applied to a range of different trapping beam shapes. The results in this thesis can help to find
better ways of confining atoms, that are used as a platform for strong coupling of single-photons with
atomic ensembles.

Outlook

The implementation of a new optical trap in the experimental setup presented in this thesis is directly
applicable to future experiments aimed at spatially resolving photon–photon interactions mediated by
Rydberg–Rydberg interactions, using an EMCCD camera [171].

While the work presented in this thesis indicates that it is possible to limit the motional dephasing
of collective Rydberg excitations with the magic standing-wave trap, there are other effects that limit
the coherence time. For example, high and spatially varying atomic densities as shown in Fig. 5.9(a).
In a standing wave trap, the atomic density varies rapidly over short distances, leading to an additional
limitation on the coherence time which is independent of whether the trap is magic or not.

This problem can generally be solved by reducing the atomic density in the trap [37]. However,
a lower number of atoms contributing to the collective excitation also results in a reduced coupling
of the atomic ensemble to single photons. As a result, the new one-dimensional trap may not be
directly applicable for systems with a single or few Rydberg superatoms that require strong light-matter
coupling. It is however possible to imagine a waveguide-like system with a higher number (on the
order 10) dilute superatoms along the standing-wave trap, and, thereby, avoid the coherence time
limitation by high densities.

An alternative approach would be to replace the existing dimple trap laser at 805 nm with a laser
operating at 1012 nm. This substitution would enable the creation of magic dimple traps, significantly
reducing dephasing caused by differential light shifts. Such a dimple trap could potentially be
combined with a one-dimensional trap aligned along the probe beam axis, offering improved control
over atomic motion and coherence.

The ability demonstrated in this thesis to modify the trapping potential experienced by the Rydberg
state without affecting the ground state potential has broader applicability in experiments involving
Rydberg atoms. It provides a means to engineer tailored trapping potentials specifically for Rydberg
states or to exploit the differential light shift for fine control over the two-photon transition frequency
into Rydberg states.
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APPENDIX A

Gauge Invariance of the Dynamic Polarizability

The energy corrections in Eq. 3.14 and Eq. 3.15 from the main text are calculated in the Coulomb
gauge. In the literature, polarizabilities are often calculated by a sum-over-states approach [59, 112,
113, 127]. In this appendix, we calculate and visualize the dynamic polarizabilities in two different
gauges [51].

The energy corrections from the interaction Hamiltonians proportional to 𝑨(𝒓 + 𝒓e, 𝑡) ⋅ �̂�e and
𝑨2(𝒓 + 𝒓e, 𝑡) are given in the main text as
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with the free-electron polarizability 𝛼 𝑓 = −𝑒2/𝑚e𝜔
2. For the following calculation, we only consider

the polarizability-like terms
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𝛼
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𝑞,CG = 𝛼 𝑓 ,

where the subscript in 𝛼
(1)
𝑞,CG denotes that the polarizability for state 𝑞 is calculated in the Coulomb

gauge (CG). The denominator in Eq. A.1 can be rewritten to
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The contribution from 𝛼
(1)
𝑞,CG can be decomposed in a scalar, a vector and a tensor part [113]. Here,
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we only consider the scalar part and write the polarizabilities as
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The total polarizability for state 𝑞 from our calculation in the Coulomb gauge is given by

𝛼𝑞,CG = 𝛼
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This equation can be reformulated by including the term 𝛼 𝑓 = −𝑒2/𝑚e𝜔
2 into the sum as shown in

Ref. [51]. The calculation uses the oscillator sum rule given by

− 𝑚e
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Figure A.1(a) shows the cumulative sum over coupled states 5 ≤ 𝑗 ≤ 130 for different states ∣𝑞⟩. The
resulting polarizability is given by [51]

𝛼𝑞,LG = −∑
𝑗≠𝑞
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2
𝑞 𝑗 −𝜔2 , (A.4)

which matches with the calculation for the polarizability in the length gauge.
Figure A.1(b) and A.1(c) shows the contributions in Eq. A.2 and Eq. A.4 for the ground state 5𝑆1/2

and the Rydberg state 45𝑆1/2 in rubidium-87, respectively. For the ground state, the length gauge
polarizability 𝛼𝑔,LG is the generally used polarizability [79]. In the Coulomb gauge, the polarizability
𝛼
(1)
𝑔,CG diverges for long wavelength. The experimentally observed polarizability 𝛼𝑔 is recovered only

by also considering the free-electron contribution 𝛼 𝑓 . The Rydberg state polarizability 𝛼𝑟 ,CG in
Fig A.1(c) is well described by the free-electron polarizability, as the contribution 𝛼

(1)
𝑟 ,CG is vanishingly

small. The negative polarizability originates from the 𝑨2(𝒓 + 𝒓e, 𝑡) term, which sometimes is called
diamagnetic term. The movement of the Rydberg electron in the non-uniform electromagnetic field
leads to a repulsive force onto the entire Rydberg atom [49]. This phenomenon is similar to the
diamagnetic behavior of atoms in a magnetic field [172]. Diamagnetism refers to the property of
materials to be repelled by external magnetic fields. The material creates an induced magnetic dipole
moment that is oriented opposite of the external field. The resulting force pushes a diamagnetic object
away from high field intensities.

The overall negative dynamic polarizability of the Rydberg state in Fig. A.1(c) can be perturbed by
the near-resonant coupling to lower-lying atomic states. The near-resonant coupling is used to form
the magic trap discussed in Chapter 5.
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Figure A.1: (a) The cumulative sum over the states with principal quantum number 𝑗 in Eq. A.3 for different
atomic states ∣𝑛⟩. The sum approaches unity, when considering enough states 𝑗 above the target state 𝑛. (b), (c)
The different scalar polarizability contributions for (b) the ground state 5𝑆 and (c) the Rydberg state 45𝑆, from
the calculation in the Coulomb gauge (CG) and in the length gauge (LG). For the ground state polarizability, the
first two resonances to the states 5𝑃 and 6𝑃 are visible. For the Rydberg state, no resonances are visible as they
are not resolved by the coarse wavelength axis.
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