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CHAPTER 1

Introduction

A trend in modern quantum physics is the development of hybrid quantum systems [1, 2]. Here,
distinct physical platforms are interfaced with each other to leverage complementary advantages [2].
By coupling distinct physical platforms—such as atoms to photons [3], atoms or spins to microwave
circuits [4, 5], or mechanical resonators to superconducting qubits [6], these platforms aim to engineer
functionalities that exceed those of their individual components [7]. Such hybrid platforms span
a broad spectrum of functionalities [1] — including, but not limited to, quantum memories [8, 9],
microwave–optical transducers [10, 11], integration of neutral-atom arrays with nanophotonic chips to
explore strongly interacting light–matter systems [12], or coupling collective spin excitations to other
physical platforms [13]. In this context, Rydberg atoms [14] and high-overtone bulk acoustic wave
resonators (HBARs) [15] represent two complementary platforms. An interface between these two
systems could enable coherent information transfer between atomic and mechanical degrees of freedom,
opening new opportunities in quantum information processing.

Rydberg atoms are highly excited atoms with exaggerated physical properties [14], making them
promising for various applications in quantum technologies [16] and fundamental physics research [17–
20]. Rydberg experiments have been carried out with a wide range of atomic species [21–24], prominently
with Rubidium [25–28], and more recently with a dual-species platform [29]. They offer a broad band of
transitions, ranging from the optical regime to microwave frequencies [16]. Their large electric dipole
moments and static polarizabilities enable high sensitivity to microwave [30–32] and static fields [33],
respectively. It makes them suitable for precision electrometry and sensing applications. Apart from
external fields, Rydberg atoms exhibit strong interactions with each other [16, 34–36], which can be
harnessed for entanglement gates in neutral atom quantum computers [37, 38] or used to study dynamics
of collective quantum systems [25, 39], using the Rydberg blockade effect [36, 40]. Despite their high
sensitivity to external disturbances, Rydberg states can have long lifetimes on the ms timescale [41]. At
room temperature, the lifetime is limited by blackbody radiation-induced transitions to other Rydberg
states [42, 43], but in a cryogenic environment, lifetimes of several milliseconds can be achieved [44].
Rydberg atoms are thus well suited for applications requiring long coherence, high sensitivity, and
transitions in both the microwave and optical domains [16].

A fundamentally different branch of quantum physics is quantum acoustics, which studies quantized
vibrations, called phonons, in (macroscopic) mechanical resonators and their interactions with other
quantum systems [6, 45]. Contrary to single atoms, the dynamics inside a mechanical resonator
emerge from collective motion of many atoms inside the solid material [46]. There are many types
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Chapter 1 Introduction

of mechanical resonators like optomechanical membranes [47] or engineered nanobeams [48], which
operate at a few MHz. However, they are not limited to that as there are devices operating – like
Rydberg atoms – at microwave frequencies [15, 49]. One of these devices is a High Overtone Bulk
Acoustic Wave Resonator [6] which consists of a bulk material that can host long-lived [15], high
overtone acoustic modes, typically in the 5 − 10 GHz frequency range [6, 50]. Lifetimes of several
milliseconds have been demonstrated at GHz frequencies in cryogenic environments [50] as well as
cooling to the quantum-mechanical ground state [50]. These devices are promising for fundamental
physics research, e.g., probing quantum gravity [51], generating squeezed states for quantum sensing
applications [52] and multi-phonon Fock states [53]. Furthermore, they are of interest for quantum
technologies like superconducting qubit interfaces [6, 53], directly using it as an acoustic qubit [54],
bidirectional microwave-to-optical transduction [10] or coupling to vacancy centers in diamond [45, 55].
In these experiments, the coupling is typically mediated by a piezoelectric layer on top of the resonator
that converts acoustic motion into an electric field [6].

In the Nonlinear Quantum Optics group, interactions of Rydberg atoms with light at the level of single
photons are studied [25–28]. Building on this expertise, the Hybrid Quantum Optics (HQO) experiment
aims to extend these studies from single photons to single phonons by interfacing rubidium-87 Rydberg
atoms with an HBAR via the piezoelectric effect [56]. This approach aims to combine the advantages
of both systems, leveraging the strong interactions and long coherence times of Rydberg atoms with
the high quality factors and GHz operation frequencies of HBARs. As a first goal, the experiment will
focus on trying to cool an HBAR to its quantum mechanical ground state, using the Rydberg atoms as an
active cooling agent.

To realize the interaction between Rydberg atoms and an HBAR, several key requirements must
be met. First, both systems must operate in a low temperature environment. For Rydberg atoms,
blackbody-induced transitions limit the lifetime at room temperature [42, 43], while for HBARs, phonon
lifetimes are reduced and thermal phonon occupation is high in the resonator [15]. A cryogenic
environment is therefore essential to achieve long atomic coherence times [44], high mechanical quality
factors [50], and a low thermal phonon occupation of the resonator. Second, the atoms must be brought
close to the resonator surface to ensure sufficient coupling to the evanescent electric field of the HBAR
mode. This requires trapping ultracold atoms (in the µK regime) close to the resonator surface (at
distances of ∼ 35 − 50 µm). Third, excitation of the atoms to a Rydberg state demands narrow-linewidth
laser systems at the relevant optical transition frequencies [57, 58].

The HQO experiment is designed to meet these requirements by combining a cryostat, providing a base
temperature of 4 K, with an atom chip that integrates both a superconducting magnetic wire trap [59] and
the HBAR. This architecture enables magnetic trapping and manipulation of cold rubidium-87 atoms
directly above the resonator surface in a compact and fully cryo-compatible platform. A set of lasers at
780 nm, called probe laser, and 480 nm, called control laser, provide the ability for Rydberg excitation of
rubidium-87.

The preparation of cold atoms, transport to the experiment, and subsequent Rydberg excitation have
been implemented [60, 61]. In addition, a first-generation atom chip—without the HBAR—was designed
and fabricated, incorporating a superconducting niobium wire trap and a superconducting niobium
coplanar waveguide resonator to test atom trapping, Rydberg excitation, and microwave coupling [62].
Building on this, the present thesis pursued three key objectives to advance the system toward HBAR
integration. The objectives were to characterize the fabricated atom chip, to quantitatively understand
the coupling between Rydberg atoms and an HBAR, and to simulate HBAR cooling with Rydberg atoms.
The results will guide the development of a second-generation atom chip integrating the HBAR.
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Chapter 1 Introduction

In this thesis, the properties of HBARs are introduced in Chapter 2, and the coupling mechanism
between Rydberg atoms and the HBAR via the piezoelectric effect is explained in Sections 2.1.2 and 2.2.
This ultimately leads to quantitative results for the single phonon evanescent electric field that can
couple to the Rydberg atoms in dependence of the tunable system parameters in Section 2.3.2 and
the expected single phonon Rabi frequency in Section 3.1. Having established realistic parameters,
Chapter 3 presents simulations of cooling the HBAR with collective Rydberg excitations, based on
a master equation approach. The results in Section 3.3.2 will show that ground-state cooling of the
HBAR is feasible with realistic experimental parameters and that a single collective excitation coupled
to the HBAR is superior in terms of cooling performance compared to a single excited Rydberg atom
coupled to it. Lastly, Chapter 4 discusses the characterization of the fabricated atom chip in terms of its
microwave resonator properties and its magnetic trapping capabilities. Chapter 5 gives a summary of
this thesis and an outlook for the experiment.
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CHAPTER 2

High-Overtone Bulk Acoustic Wave Resonator

As outlined in the introduction, the aim of the HQO experiment is to interface Rydberg atoms with
a high-overtone bulk acoustic wave resonator (HBAR). An HBAR is an acoustic resonator in which
the wavelength of the supported acoustic modes is much smaller than the thickness of the substrate,
leading to the existence of high-overtone (longitudinal) modes inside of it. In the following, we focus on
a specific HBAR implementation developed in the group of Yiwen Chu [6, 46, 53, 54]. A schematic
sketch of this device is shown in Fig. 2.1 (note that this coordinate system will be used throughout this
Chapter without explicitly introducing it again). It consists of a ∼ 400 µm thick sapphire substrate and a
thin (∼ 1 µm) Aluminium Nitride dome on top. Through the curved shaped of the dome that acts as a
curved mirror for acoustic waves, the HBAR can host long-lived modes. A Gaussian mode inside the
resonator is sketched in the top right inset of Fig. 2.1. These devices reach high mechanical quality
factors, exceeding values of 𝑄 ∼ 107 [54] which results in linewidths below 1 kHz [54] around resonance
frequencies of 6 GHz. These are in the same range as the natural linewidths of Rydberg states with 𝑛

around 80 in rubidium [63].
Because the dome (AlN) is a piezoelectric material, an oscillating acoustic mode inside this dome

that induces a periodic deformation of the material will generate an oscillating electric field above
the surface via the piezoelectric effect [6]. This mechanism is commonly used to couple HBARs to
superconducting qubits [6]. In our experiment, we aim to extend this approach to a different physical
platform by positioning Rydberg atoms in close proximity to the dome surface, allowing them to couple
to the electric field of the acoustic mode.

In the following, we establish the physics of the HBAR and show how the piezoelectric effect enables
its acoustic mode to couple to a Rydberg atom. We then construct an analytical model of the resulting
oscillating electric field, extracting its scaling behaviour with respect to important system parameters.
Finally, we perform a quantitative simulation of the electric field generated by a single phonon at the
atomic position, providing the input required for the coupling-strength calculation in Chapter 3. After
this, real HBARs for the experiment are discussed in Section 2.4 (for readers interested only in the key
simulation results, see Section 2.3.2; for an overview of a possible experimental implementation, see
Section 2.5 instead).
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Chapter 2 High-Overtone Bulk Acoustic Wave Resonator

Figure 2.1: Sketch of an HBAR of same type as used in Ref [46]. It consists of a ∼ 400 µm thick sapphire substrate
and a curved dome on top (of height ∼ 1 µm, half an acoustic wavelength), made out of Aluminium Nitride, which
is a piezoelectric material. The top right inset shows an acoustic mode (strain) inside a cut through the 𝑧𝑦-plane
(dashed red square) of the HBAR. The red-blue pattern symbolizes the longitudinal strain amplitude inside the
HBAR. The curved dome acts like a curved mirror that confines the acoustic mode inside the resonator. Because
of the piezoelectric effect, the dome generates an oscillating electric field above itself. The bottom left inset
(Image courtesy Raquel Garcia, ETH Zurich) shows a top view from a real device with an AlN dome which will
be described in more detail in Section 2.4.

2.1 Fundamental Working Principles

In order to understand the physics of high-overtone bulk acoustic wave resonators (HBARs), it is useful
to review some important theoretical concepts. The starting point is the description of acoustic wave
propagation in crystalline solids, which can be formulated within the framework of linear elasticity
theory. On this basis, we introduce the principles of piezoelectricity, which explain how mechanical
strain in a crystal is coupled to an electric field. In the context of our experiment, this mechanism is
essential because it allows the resonator to generate an oscillating electric field that can be coupled to the
Rydberg atoms. After introducing piezoelectricity, we discuss how acoustic modes in such resonators
can be quantized, and finally examine the types of modes that are present in the HBAR of interest to be
able to quantitatively describe the acoustic modes as sketched in Fig. 2.1.

2.1.1 Acoustic Waves in Crystals

In this section, we will investigate how acoustic waves propagate in crystals, specifically in anisotropic
media, in order to understand how they propagate in the HBAR. To do so, we will begin with a brief
introduction to linear elasticity theory to familiarize ourselves with the relevant physical quantities.
Afterwards, we will review the acoustic wave equation in an anisotropic medium to understand how
waves propagate there.
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Linear Elasticity Theory

When one has a look inside a crystal, depending on the resolution, one can see individual atoms arranged
in some periodic structure. Separations between individual atoms are typically on the order of a few Å
[64]. In sapphire for example, the distances between atoms are about 2 Å [65]. However, the acoustic
wavelength of waves in the GHz regime in sapphire is on the order of a few µm [6], which is about 1000
times larger. This means that we can use a continuum approximation, where individual atoms are not
resolved, to describe the propagation of acoustic waves in crystals [64]. In this approximation, we can
describe the crystal as a continuous medium with a density 𝜌 and a displacement field ®𝑢(®𝑥, 𝑡), which
describes the displacement of the medium at position ®𝑥 and time 𝑡. We further make the assumption that
deformations inside the material are small. This means that we are in a regime where the deformation
is linearly proportional to an applied force. In microscopic terms this means that individual atoms
are displaced only by a small distance from their equilibrium position where the potential can be
approximated to be harmonic [64]. This is known as the linear elasticity regime.

There are three important quantities to describe the state of an approximately continuous medium at a
given point (®𝑥, 𝑡): The displacement field ®𝑢(®𝑥, 𝑡), the strain tensor 𝑆𝑖 𝑗 (®𝑥, 𝑡) and the stress tensor 𝑇𝑖 𝑗 (®𝑥, 𝑡)
[66]. In the following, an introduction to these quantities and how they are related to each other is given
based on refs. [64, 67].

First we consider an elastic body in a cartesian coordiate system where we look at a reference point
𝑝 at position (𝑥1, 𝑥2, 𝑥3). If this body undergoes a translation and/or a small deformation and/or a
rotation, a point 𝑝 is displaced from its original position to a new point 𝑝′. If the material is deformed
non-uniformly, this displacement must be described uniquely at each point ®𝑥 inside the body. This is
done using the displacement field ®𝑢(®𝑥), which is defined as the difference between the new position ®𝑥′
and the old position ®𝑥:

®𝑢(®𝑥) = ®𝑥′ − ®𝑥 = 𝑢(®𝑥)𝑒𝑥 + 𝑣(®𝑥)𝑒𝑦 + 𝑤(®𝑥)𝑒𝑧 . (2.1)

Here, 𝑒𝑖 is the 𝑖-th component of the unit vector and (𝑢, 𝑣, 𝑤) describe the displacement amplitudes in
all three dimensions. The notation with ®𝑢 = (𝑢, 𝑣, 𝑤) is used as it is a very common notation in the
literature and for example used in finite element simulation software like COMSOL [68], which we
will use at a later point. Microscopically, the displacement field would describe how much an atom is
displaced from its equilibrium position.

It is not only of interest to look at the displacement of single points in space, but also how the distance
between two points changes when the body is deformed. This is described by the strain tensor 𝑆𝑖 𝑗 . To
understand this quantity, we have to look at how an infinitesimal line element d®𝑥 between point 𝑝 and 𝑞

changes when the body is deformed. If we displace point 𝑝 to 𝑝
′ by ®𝑢(®𝑥) and point 𝑞 to 𝑞

′ by ®𝑢(®𝑥 + d®𝑥)
we can write

®𝑢(𝑥𝑖 + d𝑥𝑖) = ®𝑢(𝑥𝑖) +
𝜕𝑢𝑖

𝜕𝑥 𝑗
d𝑥 𝑗 + O(d𝑥2) , (2.2)

under the assumption that the displacement field is differentiable. The new line element is then given by

d𝑥′𝑖 = d𝑥𝑖 +
𝜕𝑢𝑖

𝜕𝑥 𝑗
d𝑥 𝑗 . (2.3)
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We can split the derivative into a symmetric and an antisymmetric part:

𝜕𝑢𝑖

𝜕𝑥 𝑗
=

1
2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
+
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
+ 1

2

(
𝜕𝑢𝑖

𝜕𝑥 𝑗
−
𝜕𝑢 𝑗

𝜕𝑥𝑖

)
= 𝑆𝑖 𝑗 + 𝐴𝑖 𝑗 , (2.4)

where 𝑆𝑖 𝑗 is the symmetric part and 𝐴𝑖 𝑗 is the antisymmetric part. The symmetric part is known as the
strain tensor, which describes how much the body is deformed, while the antisymmetric part describes
how much it is rotated [67]. In the following, we will only look at the strain tensor as we are not interested
in rotations in this context. As for the displacement field, the strain tensor will also have different values
at different space points when dealing with nonuniform deformations. It is a second rank tensor, which
means that it has nine components, but only six of them are independent due to the symmetry of the
tensor 𝑆𝑖 𝑗 = 𝑆 𝑗𝑖 [67].

Having defined the strain tensor, we have to look at another quantity which is the cause of the
deformation, namely the stress tensor 𝑇𝑖 𝑗 . The stress is defined as the force per unit area inside the body
where 𝑖 represents the direction of the force and 𝑗 the normal direction of the plane where the force
is applied [64]. As for the strain tensor, the stress tensor also only has six independent components
(𝑇𝑖 𝑗 = 𝑇𝑗𝑖). As already mentioned, we are only interested in small deformations, which means that the
stress is linearly proportional to the strain. This can be written as:

𝑇𝑖 𝑗 = 𝑐𝑖 𝑗𝑘𝑙𝑆𝑘𝑙 (2.5)

𝑆𝑖 𝑗 = 𝑠𝑖 𝑗𝑘𝑙𝑇𝑘𝑙 , (2.6)

where 𝑐𝑖 𝑗𝑘𝑙 is the stiffness tensor (or sometimes called elasticity tensor) and 𝑠𝑖 𝑗𝑘𝑙 is the compliance
tensor [67]. The stiffness tensor describes how much stress is needed to create a certain strain, while
the compliance tensor describes how much strain is created by a certain stress. The stiffness tensor is a
fourth rank tensor, which means that it has 81 components, but only 21 of them are independent due to
the symmetry of the tensor [67]. The compliance tensor is also a fourth rank tensor with 21 independent
components. In following calculations we will only deal with the stiffness tensor. However, it is good to
know about the compliance tensor. For example, in finite element simulations with COMSOL, one has
to choose between the stiffness tensor and the compliance tensor [69], which is why it is mentioned here.
The stiffness tensor and the compliance tensor are material properties and depend on the composition
and internal structure of the material. While the stiffness tensor and the compliance tensor can have up to
21 independent components, this is not always the case as material properties such as crystal symmetries
may introduce additional bounds on the tensor components. In case of a completely isotropic material,
the stiffness tensor can be reduced to only two independent components, which are the bulk modulus and
the shear modulus [67].

Acoustic Wave Equation

In the previous section, we have introduced the basic concepts of linear elasticity theory and how to
describe the state of a medium with the displacement field, strain tensor and stress tensor. In this section,
we will need these concepts to understand how acoustic waves propagate in a medium.

We start by writing down the equation of motion for a small volume element in the medium, which is
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Chapter 2 High-Overtone Bulk Acoustic Wave Resonator

given by Newton’s second law [67]:

𝜌
𝜕

2
𝑢𝑖 (®𝑟)
𝜕𝑡

2 =
𝜕𝑇𝑖 𝑗 (®𝑟)
𝜕𝑥 𝑗

+ 𝑓𝑖 (®𝑟) , (2.7)

where 𝑓𝑖 (®𝑟) are external forces acting on the body like for example gravity. In the case of acoustic waves,
we assume that there are no external forces acting on the body that need to be considered, which means
that 𝑓𝑖 (®𝑟) = 0. Next, we can use the relation between stress and strain given in Eq. (2.5) and the relation
between strain and displacement given in Eq. (2.4) to rewrite the equation of motion as:

𝜌
𝜕

2
𝑢𝑖

𝜕𝑡
2 = 𝑐𝑖 𝑗𝑙𝑚

𝜕
2
𝑢𝑚

𝜕𝑥 𝑗𝜕𝑥𝑙
. (2.8)

This is the acoustic wave equation in an anisotropic medium, which describes how acoustic waves
propagate in a medium with a given stiffness tensor 𝑐𝑖 𝑗𝑘𝑙 and material density 𝜌. Solutions of this
equation are of the form [70]:

®𝑢(®𝑟, 𝑡) = 𝑢0𝑛̂pol𝑒
𝑖 ( ®𝑘 · ®𝑟−𝜔𝑡 )

, (2.9)

where 𝑢0 is the amplitude of the wave, ®𝑘 is the wave vector and 𝜔 is the angular frequency of the wave.
The wave vector describes the direction of propagation by ®𝑘 = 𝑘𝑛̂ where 𝑛̂ is a unit vector in the direction
of propagation and 𝑘 is the absolute wave number. The direction of the displacement field of the wave is
called the polarization of the wave as given by 𝑛̂pol. We can insert Eq. (2.9) into Eq. (2.8) and end up
with the following equation which is known as the Christoffel equation [67]:(

𝑐𝑖 𝑗𝑘𝑙

𝜌
𝑛 𝑗𝑛𝑘 − 𝑣

2
𝛿𝑖𝑙

)
𝑢0𝑙 = 0 , (2.10)

where 𝑣 = 𝜔/𝑘 is the phase velocity of the wave and 𝑛 𝑗 ,𝑘 are the 𝑗 , 𝑘-th component of the propagation
direction unit vector 𝑛̂. The nontrivial solutions determine the dispersion relation of the acoustic wave.
For each propagation direction 𝑛̂, there are three solutions for the eigenvectors corresponding to three
possible polarizations 𝑛̂pol with corresponding eigenvalues determining the phase velocities of the wave,
which means that there are three different acoustic modes that can propagate in the medium given a
specific direction of propagation. In most cases, the polarizations of the eigenmodes are not perfectly
longitudinal or transversal as for an isotropic medium, one calls the modes that closest resemble them
to be quasi transversally and quasi longitudinally polarized. This dispersion relation is very similar to
birefringence in optics, where the refractive index depends on the propagation direction and polarization
of the light. The practical consequences of Eq. (2.10) will come clear when we discuss the acoustic
modes of the HBAR in Section 2.1.4.

Voigt Notation

Before looking into the theory of piezoelectricity, we will discuss a notation to write the introduced
acoustic quantities in a more compact form, which is useful for numerical simulations and analytical
calculations. We will also make use of this notation later. In this notation, the strain and stress tensors
are written as vectors with six components which is possible because of their symmetry properties [67].
The stiffness tensor is then written as a matrix with 6 × 6 components. This simplified notation is called
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Voigt notation. The Voigt notation replaces the Cartesian coordinate subscripts of the strain (stress)
tensor with numbers. The notation is defined as follows [67] (stress and compliance follow analogously):

1 ≡ 𝑥𝑥, 2 ≡ 𝑦𝑦, 3 ≡ 𝑧𝑧, 4 ≡ 𝑦𝑧, 5 ≡ 𝑥𝑧, 6 ≡ 𝑥𝑦 . (2.11)

This means, for the strain tensor components:

𝑆1 = 𝑆𝑥𝑥 , 𝑆2 = 𝑆𝑦𝑦 , 𝑆3 = 𝑆𝑧𝑧 , (2.12)

𝑆4 = 2𝑆𝑦𝑧 = 2𝑆𝑧𝑦 , 𝑆5 = 2𝑆𝑥𝑧 = 2𝑆𝑧𝑥 , 𝑆6 = 2𝑆𝑥𝑦 = 2𝑆𝑦𝑥 . (2.13)

The stiffness coefficients 𝑐𝑖 𝑗𝑘𝑙 are mapped to 𝑐𝑚𝑛 (6 × 6 matrix) in Voigt notation. Symmetries reduce
the number of independent components to 21, meaning a symmetric matrix [67].

𝑐𝑖 𝑗𝑘𝑙 = 𝑐 𝑗𝑖𝑘𝑙 = 𝑐𝑖 𝑗𝑙𝑘 = 𝑐 𝑗𝑖𝑙𝑘 = 𝑐𝑘𝑙𝑖 𝑗 = 𝑐𝑙𝑘𝑖 𝑗 = 𝑐𝑘𝑙 𝑗𝑖 = 𝑐𝑙𝑘 𝑗𝑖 . (2.14)

In the following sections we will always specify whether we use Voigt or tensor notation.

2.1.2 Piezoelectricity

Piezoelectricity is a property of certain materials to induce a polarization when mechanically stressed.
This is known as the direct piezoelectric effect [71]. Of course, this effect is reversible and can also be
used to induce a mechanical stress when an electric field is applied, which is known as the converse
piezoelectric effect. In the following, we will look into the direct piezoelectric effect in more detail to
understand how we can use it to couple an atom, which would normally only interact with electromagnetic
fields, to an acoustic field.

Whether a material is piezoelectric depends on the internal structure, namely the microscopic charge
distribution. To be more precise, a medium needs to lack inversion symmetry to be piezoelectric [72].
To understand this we can assume a crystal where we apply a stress and therefore polarize it. If we
now assume that the crystal has an inversion center, and we invert the crystal and the applied stress, the
crystal and the stress will not change [72], but the polarization (a vector quantity) will point into the
opposite direction. This can only work in case the polarization is equal to zero meaning that the crystal
has no piezoelectric properties. Microscopically this means that each microscopic dipole has a twin that
points into opposite direction, and they cancel each other out. One simple example is shown in Fig. 2.2
where the distribution of charges has no inversion center. The deformation of the material leads to a
deformation of the charge distribution which leads to a polarization of the material. This very simple
example also shows that the polarization vector does not necessarily point in the same direction as the
applied stress.

Constitutive Relations

Knowing the origin of piezoelectricity, we have to formulate this effect mathematically as we are
interested in the coupling between the HBAR and an atom via the piezoelectric effect in a quantitative
way (we will use Voigt noation for this). The direct piezoelectric effect can be described by

𝑃𝑝,𝑖 = 𝑒𝑖𝑚𝑆𝑚 , (2.15)
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Figure 2.2: Image shows a simple example of piezoelectricity. The left image shows a charge distribution with
positive (red) and negative (blue) charges. No force ®𝐹 is acting on the structure and the center of positive and
negative charges coincide (white circle in the middle). The right images shows the same structure but with a
force applied from the top which leads to a deformations. The center of positve and negatice charges are shifted
in opposite directions (red and blue circles in the middle), which leads to a net polarization ®𝑃 of the structure.
Example is adapted from [73].

where 𝑃𝑝,𝑖 is the 𝑖-th component of the strain induced polarization vector ®𝑃𝑝, 𝑒𝑖𝑚 is the piezoelectric
tensor in Voigt notation which characterizes how strong a strain has to be to induce a certain polarization
and 𝑆𝑚 is the strain in Voigt notation. As we already saw in the simple example from Fig. 2.2 the
polarization vector does not necessarily point in the same direction as the applied strain, which is why
we have to use a tensor to describe this quantity. As for the stress-strain relation, we assume to be in a
regime where the polarization is linearly proportional to the strain in the material.

Since we are still in an elastic and dielectric material, we can not only consider the strain induced
polarization alone but also have to take into account the polarization induced by the internal electric
field as well as the strain induced by an external stress. Combining these effects is described by the
constitutive relations (in the so called stress-charge form) [74]:

𝑇𝑖 = 𝑐
𝐸
𝑖 𝑗𝑆 𝑗 − 𝑒𝑚𝑖𝐸𝑚 (2.16)

𝐷𝑖 = 𝑒𝑖 𝑗𝑆 𝑗 + 𝜖
𝑆
𝑖 𝑗𝐸 𝑗 , (2.17)

where 𝑇𝑖 is the 𝑖-th component of the stress, 𝐷𝑖 is the 𝑖-th component of the electric displacement field,
𝑐
𝐸
𝑖 𝑗 is the stiffness tensor 𝜖𝑆𝑖 𝑗 is the permittivity tensor and 𝐸𝑖 is the 𝑖-th component of the electric field.

The superscript 𝐸 in 𝑐
𝐸
𝑖 𝑗 and the superscript 𝑆 in 𝜖

𝑆
𝑖 𝑗 indicate that these quantities are measured at constant

electric field and constant strain, respectively. This is important to note as the tensor components differ
from the case where they would be measured at constant stress and constant electric displacement field.
We can understand this easily for the stiffness tensor. Suppose we have a piezoelectric material between
two metal electrodes (like a plate capacitor). If we connect the electrodes, the electric field inside will be
constant (zero) as any strain induced surface charges are cancelled out by free moving charges. We can
measure the stiffness tensor in this case by applying stress and measuring the strain to get 𝑐𝐸 . If we now
disconnect the electrodes, strain induced surface charges can not be cancelled out anymore because there
are no free charges that can flow between the electrodes. This means constant displacement field (zero)
but not constant electric field. If we now apply a stress, the material appears more stiff since the induced
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polarization is not cancelled out by free charges anymore and counteracts the applied stress. We would
now measure 𝑐

𝐷 ≥ 𝑐
𝐸 . Whethere this distinction is important depends on the material, but in the case

of aluminum nitride (AlN), which we will use in the HBAR, the difference can be neglected [75, 76].
However, it is important to know this destinction to not be confused when looking at material constants
in literature.

Another thing to note is that solving these equations to obtain a specific quantity of interest, like
the total polarization, is in general not trivial and depends on the exact boundary conditions. We will
later see in Section 2.2 that we can make valid approximations to use Eq. (2.17) to calculate the total
polarization to calculate the generated electric field that couples to an atom.

Piezoelectricity in Aluminium Nitride

We now understand the requirement for a material to be piezoelectric, namely that it lacks inversion
symmetry, and how to describe this effect mathematically. In this section, we will take a look at the
piezoelectric properties of aluminum nitride (AlN), which is the material used in the HBAR to be later
able to understand the shape and strength of the generated electric field above the HBAR.

Fig. 2.3 shows the crystal structure of AlN. It is orgainzed is a so called “wurtzite”-structure [77].
This is a hexagonal crystal structure where both Al and N atoms are arranged in a hexagonal structure
with alternating layers of Al (cation) and N atoms (anion). As one can see from this Figure, the two
species of atoms are displaced in the 𝑧-direction in such a way that it lacks an inversion center along
this axis. Looking at an Al ion surrounded by four N ions and vice versa and realize that the center of
charges do not coincide (two different bond lengths) which results in a nonzero spontaneous polarization
along the 𝑧-direction and the ability to generate an additional polarization when mechanically stressed in
this direction [77].

Returning to Fig. 2.3 we can see that the 𝑧-axis is labeled as the 𝑐-axis (name in literature), the material
is normally grown along this axis. AlN has three independent piezoelectric tensor components. For this
work we are only interested in the polarization along the 𝑐-axis as all other components are negligible for
our application as we will later see in Section 2.1.4. Using the material constants of AlN and Eq. (2.15),
the strain induced polarization along the 𝑐-axis is given by [77] (using Voigt notation):

𝑃𝑝,3 = 𝑒33𝑆3 + 𝑒31(𝑆1 + 𝑆2) . (2.18)

Because of the argument that the acoustic modes will be of longitudinal polarization, 𝑆1 and 𝑆2 are
negligibly small compared to 𝑆3 (and |𝑒31 | ≤ |𝑒33 | [77]). Under this assumption we can simply write the
strain induced polarization as the following:

𝑃𝑝,3 = 𝑒33𝑆3 , (2.19)

which means a strain along the 𝑐-axis leads to a polarization along the 𝑐-axis. Eq. (2.19) is important as
it will be used for the calculation of the electric field in Sections 2.2 and 2.3.1.

2.1.3 Quantization of Acoustic Modes

In this section we will take a look into how acoustic modes can be quantized. This is important to
understand how the coupling between the HBAR and the atoms works. The following theoretical
description of the quantization of acoustic modes is based entirely on [46, 79]. For a detailed derivation
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Figure 2.3: Images shows the crystal stucture of AlN. It can be decomposed into Al and N atoms organized in
seperate hexagonal structures where they are displaced relative to each other along the 𝑐-axis. The displacement
results in a different bond-length between Al and N along the 𝑐-axis compared to the other bonds. This causes a
displacement of positive and negative charge centers leading to piezoelectric properties of the material. Figure
taken from Ref [78].

and further discussion, see the original sources. For the quantization we do not have to know the exact
spatial distribution of the acoust modes, this will become important later when calculating quantitative
coupling strength between atoms and HBAR. Therefore, we assume the following general form for the
displacement field of a mode 𝑚 inside the resonator:

®𝑢(®𝑟, 𝑡) = 𝑢(𝑡)®ℎ(®𝑟) + c.c. = 𝑢0𝑒
−𝑖𝜔𝑡 ®ℎ(®𝑟) + c.c. (2.20)

where ®ℎ(®𝑟) is a normalized mode shape function:∫
𝑉HBAR

d𝑉 | ®ℎ(®𝑟) |2 = 1 (2.21)

The total system Hamiltonian is given by:

𝐻 =

∫
𝑉HBAR

d𝑉

(
1
2
𝜌
𝜕𝑢𝑖

𝜕𝑡

𝜕𝑢
∗
𝑖

𝜕𝑡
+ 1

2
𝑐𝑖 𝑗𝑙𝑚

𝜕𝑢𝑖

𝜕𝑥 𝑗

𝜕𝑢𝑙

𝜕𝑥𝑚

)
(2.22)

By using the ansatz (2.20) and the elastic wave eqation (2.8), one can show that the Hamiltonian can be
written as:

𝐻 = 2𝜌𝜔2 |𝑢0(𝑡) |
2 (2.23)

By defining conjugate variables

𝑝 = −𝑖𝜔𝜌(𝑢0(𝑡) − c.c.), 𝑞 = (𝑢𝑜 (𝑡) + c.c.) (2.24)
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we get the Hamiltonian of a harmonic oscillator:

𝐻 =
𝑝

2

2𝜌
+ 1

2
𝜌𝜔

2
𝑞

2 (2.25)

With this we can now proceed with the quantization according to [80]. We define the creation and
annihilation operators with the commutation relation [𝑎̂, 𝑎̂†] = 1:

𝑝 = −𝑖
√︂

𝜌ℏ𝜔

2
(𝑎̂ − 𝑎̂

†), 𝑞 =

√︄
ℏ

2𝜌𝜔
(𝑎̂ + 𝑎̂

†) (2.26)

Plugging these definitions into the Hamiltonian (2.25) leads to the well known Hamiltonian of a
quantum harmonic oscillator:

𝐻 = ℏ𝜔

(
𝑎̂
†
𝑎̂ + 1

2

)
(2.27)

Before we stop here we also need to express the displacement field in the quantized form as we will need
this later to calculate the coupling strength between the HBAR and the atoms. By comparing (2.24) and
(2.26), we can express 𝑢(𝑡) in the quantized form:

𝑢̂(𝑡) =

√︄
ℏ

2𝜌𝜔
𝑎̂(𝑡) (2.28)

This gives us the quantized displacement field of a mode 𝑚 inside the resonator:

𝑢̂(®𝑟, 𝑡) =

√︄
ℏ

2𝜌𝜔
𝑎̂(𝑡)®ℎ(®𝑟) + H.c. (2.29)

Of course, there are infinity many modes inside the resonator. The Hamiltonian of the full system is
then given by the sum over all modes. Here we will only consider one specific mode of the resonator that
will later couple to the atoms.

2.1.4 Acoustic Modes of an HBAR

The acoustic modes of an HBAR can be understood by analogy with an optical cavity. The sapphire
substrate acts as the propagation medium, while the curved AlN dome provides an acoustic mirror. The
thickness profile of the dome imprints a position-dependent phase on the reflected wave, resulting in
transverse confinement through focusing of the wave after reflection [81].

By solving Eq. (2.10) for waves that propagate along the z-direction, one finds longitudinally polarized
waves as a solution for sapphire (as well as for AlN). Here, the 𝑧-axis is aligned with the crystal 𝑐-axis. It
means that the displacement field is aligned with the propagation direction along the crystal axis. We
further assume that transverse 𝑘-components remain small (paraxial approximation) and the polarization
can be taken as purely 𝑧-directed.

Under these assumptions, the confined acoustic mode can be described a longitudinal standing wave
with a Gaussian transverse envelope [46] (here, we switched to cylindrical coordinates because of the
rotational symmetry of the mode),
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®𝑢(𝑧, 𝑟, 𝑡) = 𝑢0 𝑒𝑧 cos
(𝑚𝜋𝑧

𝐿

)
exp

(
− 𝑟

2

𝑤
2

) (
𝑒
−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡 )
, (2.30)

where 𝑚 is the longitudinal mode number, 𝐿 is the total thickness of the resonator (sapphire substrate
plus AlN dome), and 𝑤 is the mode waist determined by the dome curvature [46]. The standing-wave
condition fixes

𝑚 = 1 + 2(𝐿 − 𝑑)
𝜆Sap

, (2.31)

where 𝑑 is the thickness of the AlN layer and 𝜆Sap is the acoustic wavelength in sapphire. This assumes
that half an acoustic wavelength is located inside the dome. Because the longitudinal variation is much
faster than the transverse one (𝜆Sap ≪ 𝑤), we approximate 𝜕𝑢𝑧/𝜕𝑥 ≈ 𝜕𝑢𝑧/𝜕𝑦 ≈ 0. The strain tensor
(2.4) then reduces to a single dominant component,

𝑆3(𝑧, 𝑟, 𝑡) =
𝜕𝑢𝑧

𝜕𝑧
= −𝑚𝜋

𝐿
𝑢0 sin

(𝑚𝜋𝑧

𝐿

)
exp

(
− 𝑟

2

𝑤
2

) (
𝑒
−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡 )
. (2.32)

Eq. (2.32) forms the basis for computing the piezoelectrically induced electric field in subsequent
Sections. One has to note that the HBAR also hosts high order transverse modes [46]. However, we will
mostly look at the fundamental Gaussian mode throughout this thesis. Numerically, the acoustic mode
waist of a mode given a substrate thickness and dome curvature can be for example determined using the
acoustic beam propagation method, described in Refs [46, 81, 82].

2.1.5 Single-Phonon Acoustic Fields

The next step towards understanding the interaction between the HBAR and a Rydberg atom is to quantify
the acoustic fields of a single phonon. So far, we discussed the quantization of the HBAR modes and
their mode shapes. For the coupling strength, however, it is not enough to know the frequencies or shapes
of the modes. We need the correctly normalized single-phonon displacement and strain fields to be able
to calculate the results electric field of a single phonon.

In this subsection, we carry out this normalization and obtain explicit expressions for the single-phonon
displacement and strain fields. These results provide the basis for the correct field normalization in the
numerical simulations in Section 2.3. The following derivation is based on Ref [46] but with additional
intermediate results (Eqs. (2.37) and (2.40)), that are of importance for us.

As we saw in the previous Section, the field inside the HBAR is longitudinally polarized. Therefore,
the field is reduced to:

®𝑢(®𝑟) = 𝑢0𝑒
−𝑖𝜔𝑡

ℎ𝑧 (®𝑟) · 𝑒𝑧 + c.c. . (2.33)

We now have two quantities of interest: The amplitude 𝑢0 of the displacement field and the mode shape
function ℎ𝑧 (®𝑟). The amplitude is determined by the energy stored in the resonator. The mode shape
function is determined by the geometry, the material constants and the boundary conditions of the
resonator. To later calculate the coupling strength between the HBAR and the atoms, both quantities
need to be known.
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One can show that the energy inside the resonator is given by [46, 79]:

𝐻 = 2𝜌𝜔|𝑢0 |
2
, (2.34)

where 𝜌 is the mass density of the substrate under the assumption that the piezo thickness is small
compared to the substrate thickness. We can then set this expression equal to the energy of a single
phonon and obtain the single-phonon amplitude of the displacement field:

𝑢0 =

√︄
ℏ

2𝜌𝜔
. (2.35)

This way we end up with the following expression for the single-phonon displacement field:

𝑢𝑧 (®𝑟, 𝑡) =

√︄
ℏ

2𝜌𝜔
𝑒
−𝑖𝜔𝑡

𝐴𝐻𝑧 (®𝑟) · 𝑒𝑧 + c.c. , (2.36)

where 𝐻𝑧 (®𝑟) is the unnormalized mode shape function. The product of 𝐴 and 𝐻𝑧 (®𝑟) is the normalized
mode shape function ℎ𝑧 (®𝑟). This separation is useful because from later numerical simulations we will
get an unnormalized mode shape function. We therefore have to determine 𝐴 according to:

𝐴 =

(∫
𝑉HBAR

d𝑉 |𝐻𝑧 (®𝑟) |
2
)−1/2

. (2.37)

This expression can be calculated analytically if the displacement field is known analytically or numerically
if the displacement field is obtained from numerical simulations.

As we will need this later in Section 2.3.1, the analytic form of the displacement field from Eq. (2.30) is
used to explicitly calculate the normalized mode shape function. It is given by the following expression:

𝑢𝑧 (®𝑟, 𝑡) = 𝑢0𝐴 cos
(𝑚𝜋𝑧

𝐿

)
exp

{
−𝑟2

𝑤
2

}
[𝑒−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡 ] . (2.38)

With this, we can proceed to calculate 𝐴:

1 = 𝐴
2
∫ 2𝜋

0
d𝜙

∫ ∞

0
d𝑟 𝑟 exp

{
−2𝑟2

𝑤
2

} ∫ 𝐿

0
d𝑧 cos2

(𝑚𝜋𝑧

𝐿

)
, (2.39)

which leads to:

𝐴 =

√︄
4

𝜋𝐿𝑤
2 . (2.40)

This gives us the final form of the single-phonon displacement field of a gaussian mode:

𝑢𝑧 (®𝑟, 𝑡) =

√︄
ℏ

2𝜌𝜔

√︄
4

𝜋𝐿𝑤
2 cos

(𝑚𝜋𝑧

𝐿

)
exp

{
− 𝑟

2

𝑤
2

}
[𝑒−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡 ] . (2.41)
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Figure 2.4: Left: Assuming a breathing mode of constant strain inside a cylindrical piezo disk of radius 𝑅 and
thickness 𝑏. Through the piezoelectric effect, bound surface charge densities 𝜎

±
𝑏 are generated at the top and

bottom of the disk which create an electric field above the disk. The disk is further characterized by its relative
permittivity 𝜖𝑟 Right: Induced bound space charge density 𝜌𝑏 (𝑟, 𝑧) of a Gaussian mode inside an HBAR piezo
dome. The piezo dome has a thickness of half an acoustic wavelenghts and is further characterized by its relative
permittivity 𝜖𝑟 . The mode is characterized by the acoustic mode waist 𝑤.

According to Eq. (2.32) the single phonon strain is then given by:

𝑆3(®𝑟, 𝑡) =
𝜕𝑢𝑧

𝜕𝑧
= −

√︄
2ℏ𝜔

𝜋𝑐33𝐿𝑤
2 sin

(𝑚𝜋𝑧

𝐿

)
exp

{
− 𝑟

2

𝑤
2

}
[𝑒−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡 ] , (2.42)

where 𝑐33 is the relevant elastic constant of the substrate.

2.2 Analytic Electric Field Model

Until now, we have looked into the acoustic properties of the HBAR, namely the quantization of the
acoustic modes and their spatial profiles including that of single phonons. Furthermore, we discussed the
piezoelectric properties of aluminum nitride (AlN) which is the piezoelectric material used in the HBAR.
We now have all the necessary ingredients to understand how the HBAR generates an oscillating electric
field that can couple to Rydberg atoms. Even though we will later calculate the electric field numerically,
it is useful to start with a simplified analytic model. The goal is not just to get a first estimate, but to
understand how the field depends on key parameters such as the resonance frequency. These scaling
relations remain valid when numerically calculating the electric field of a Gaussian mode as shown in
Fig. 2.4 on the right, as we will see later.

Following Ref. [56], we therefore first look at a simplified case: a piezoelectric disk of radius 𝑅 and
thickness 𝑏 that undergoes a thickness mode oscillation, as shown in Fig. 2.4 (left). In this model the
strain is assumed to be constant, which allows the electric field above the disk to be calculated directly
from the induced surface charges. However, the results for the electric field strength from Ref. [56] were
not matched by previous numerical simulations [62] that were about one order of magnitude off. We will
therefore try to understand the reason for this discrepancy and calculate the electric field analytically
which reproduces the numerical results.
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2.2.1 Quasistatic Approximation

For the GHz frequencies of interest, the electromagnetic wavelength in vacuum is on the order of
centimeters (e.g. 𝜆 ∼ 50 mm at 𝑓 = 5.8 GHz), while the atoms are located only tens of micrometers
away from the HBAR surface. Since these distances are much smaller than the wavelength, retardation
effects can be neglected and only the near-field contribution of the oscillating charges is relevant [83].

We can therefore calculate the electric field using electrostatics. In general, we will have oscillating
bound charges inside the piezoelectric material due to the strain field of the acoustic wave of the following
form:

𝜌𝑏 (®𝑟, 𝑡) = 𝜌𝑏 (®𝑟)
(
𝑒
−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡
)
, (2.43)

where 𝜌𝑏 (®𝑟) is the static spatial distribution of charges determined by the strain field. Using the
quasistatic approximation, the corresponding electrostatic field ®𝐸0(®𝑟) is then obtained for 𝜌𝑏 (®𝑟). The
time dependence of the electric field then follows that of the charges, leading to:

®𝐸 (®𝑟, 𝑡) = ®𝐸0(®𝑟)
(
𝑒
−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡
)
. (2.44)

This form will be used in the following sections to evaluate the electric field from the strain-induced
bound charges and to determine the coupling to the atoms.

2.2.2 The Total Polarization inside the Piezoelectric Resonator

The first step towards calculating the electric field generated by the HBAR is to understand the polarization
inside the piezoelectric material. The polarization is important because it is the source of the electric
field. For this we start from the constitutive Eq. (2.17):

𝐷𝑖 = 𝑒𝑖 𝑗𝑆 𝑗 + 𝜖
𝑆
𝑖 𝑗𝐸 𝑗 . (2.45)

We can decompose this equation in the following way:

𝐷𝑖 = 𝜖0𝐸𝑖 + 𝑒𝑖 𝑗𝑆 𝑗 + 𝜖0𝜒
𝑆
𝑖 𝑗𝐸 𝑗 , (2.46)

where we used that 𝜖𝑆𝑖 𝑗 = 𝜖0(𝛿𝑖 𝑗 + 𝜒
𝑆
𝑖 𝑗) with 𝜒

𝑆
𝑖 𝑗 being the electric susceptibility at constant strain. This

we can compare to the known equation from electrostatics [83]:

𝐷𝑖 = 𝜖0𝐸𝑖 + 𝑃𝑖 , (2.47)

where 𝑃𝑖 is the 𝑖-th component of the polarization vector. Comparing (2.46) and (2.47) we can identify
the total polarization 𝑃𝑡𝑜𝑡 as:

𝑃𝑡𝑜𝑡 ,𝑖 = 𝑒𝑖 𝑗𝑆 𝑗 + 𝜖0𝜒
𝑆
𝑖 𝑗𝐸 𝑗 = 𝑃𝑆,𝑖 + 𝑃𝐷,𝑖 . (2.48)

The first part 𝑃𝑆,𝑖 is the polarization that is induced by the strain inside the piezoelectric material. This is
the important part that only exisits inside a piezoelectric material, it shows that we can have a permanent
polarization without having to apply an electric field externally. The second part 𝑃𝐷,𝑖 is the polarization
that is induced by the electric field inside the piezoelectric material. This is the part that is present in all
dielectric materials and is not specific to piezoelectric materials. However, it is important to understand
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that 𝑃𝐷,𝑖 is still present in our case. Furthermore, it is important to realize that 𝑃𝐷,𝑖 weakens the electric
field as the dielectric material will try to cancel the strain induced polarization. This is why we have to
take it into account when calculating the electric field that is generated by the HBAR.

A question that arises is if we can in some ways calculate the total polarization 𝑃𝑡𝑜𝑡 ,𝑖 analytically.
This would allow us to access the electric field analytically. For this, we can use the fact that there are no
free charges in the system (these are charges that are not the results of polarization). This means that the
divergence of the displacement field is zero [83]:

∇ · ®𝐷 = 0 . (2.49)

The second thing we know is that in vacuum, above the piezo disk, we have

𝐷𝑖 = 𝜖0𝐸𝑖 , (2.50)

and we know that the normal component of ®𝐷 is continuous as the piezo-vacuum boundary in case of
no free surface charges (charges that are not the results of polarization) [83]. When neglecting edge
effects at the disk, we can assume that the electric field is purely normal to the surface of the piezo disk
which means that we only have a normal component of the displacement field 𝐷⊥. Furthermore, we
assume to not have contributing off-diagonal elements in the susceptibility tensor 𝜒𝑆𝑖 𝑗 which means that
we can write it as a scalar quantity 𝜒. Another assumption is that our acoustic mode is longitudinally
polarized such that, according to Eq. (2.19), only a strain induced polarization along the 𝑧-axis exists.
With these assumptions we can now write down the normal component of the displacement field at the
piezo-vacuum interface:

𝐷
vac
⊥ = 𝐷

pz
⊥ = 𝜖0𝐸

vac
⊥ (2.51)

→ 𝜖0𝜖𝑟𝐸
pz
⊥ + 𝑃

pz
𝐷⊥ = 𝜖0𝐸

vac
⊥ . (2.52)

Here, 𝐷 (𝐸)vac
⊥ and 𝐷 (𝐸)pz

⊥ are the normal components of the displacement (electric) field in vacuum
and the piezo, respectively, at the piezo-vacuum interface. Solving for the electric field 𝐸

pz
⊥ in the

piezoelectric material gives us:

𝐸
pz
⊥ =

𝐸
vac
⊥

1 + 𝜒
−

𝑃𝑆,⊥
𝜖0(1 + 𝜒) . (2.53)

To now calculate the total polarization 𝑃
pz
𝑡𝑜𝑡⊥ in the piezoelectric material, we can use the definition of

the total polarization (2.48) and plug 𝐸
pz
⊥ into it:

𝑃
pz
𝑡𝑜𝑡⊥ = 𝜖0

(
𝐸

vac
⊥

1 + 𝜒
−

𝑃𝑆,⊥
𝜖0(1 + 𝜒)

)
+ 𝑃𝑆,⊥ (2.54)

=
𝜖0𝜒

1 + 𝜒
𝐸

vac
⊥ +

𝑃𝑆,⊥
𝜖𝑟

. (2.55)

The electric field 𝐸
vac
⊥ above the piezoelectric material is not known. However, we can make the

assumption that the electric field outside the piezoelectric material is small compared to the piezoelectric
induced polarization 𝑃𝑆,⊥ inside.

To understand why this is a good approximation, we can think of the piezo disk as a simple plate
capacitor where the total polarization induces bound surface charges at the top and bottom of the disk.
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The electric field inside a capacitor is much larger than the electric field outside and one usually neglects
the electric field outside [83]. This is the same situation we have here. Therefore, we can assume that the
electric field outside is small compared to the piezoelectric induced polarization 𝑃𝑆 and can be neglected.
This means that we can set 𝐸vac

⊥ = 0 in (2.55) and get:

𝑃
pz
𝑡𝑜𝑡⊥ ≈

𝑃𝑆,⊥
𝜖𝑟

. (2.56)

This means that the total polarization in the piezoelectric material is given by the polarization induced
by the strain divided by the relative permittivity of the piezoelectric material. This is a very important
result as it shows that the total polarization is not only determined by the piezoelectric effect, but also by
the relative permittivity of the piezoelectric material.

2.2.3 The Electric Field above the Piezoelectric Resonator

The next step is now to determine the electric field above the pizeo as this is the quantity of interest to
calculate the coupling strength between the HBAR and the atoms. From electrostatics we know that a
polarization ®𝑃 leads to a bound volume charge density 𝜌𝑏 and a bound surface charge density 𝜎𝑏 [83]:

𝜌𝑏 = −∇ · ®𝑃 (2.57)

𝜎𝑏 = −𝑛̂ · ®𝑃 . (2.58)

where 𝑛̂ is the normal vector to the surface.
Given a polarization ®𝑃 we can now calculate thse quantities and use them for the field calculation.

Analogous to the previous mentioned Ref [56], we will assume a constant strain inside the piezoelectric
disk which results in a constant polarization along the 𝑧-axis. This strain we will call 𝑆0 where the index
0 indicates that this is the strain corresponding to a single phonon (this notation will be used from now
on to indicate quantities that are normalized to a single phonon). From equation Eq. (2.19) and Eq. (2.56)
we can derive the total polarization to be:

𝑃𝑡𝑜𝑡 =
𝑒33𝑆0
𝜖𝑟

. (2.59)

As we assume the polarization to be constant and parallel to the surface normal vector 𝑛̂, it directly
follows that

𝜌𝑏 = 0 (2.60)

𝜎
𝑑,𝑢

𝑏
= ±

𝑒33𝑆0
𝜖𝑟

, (2.61)

where 𝜎
𝑑,𝑢

𝑏
stands for the bound surface charge density at the bottom (d) and the upper (u) surface of

the piezoelectric disk. With this result we can directly calculate the electric field that a charged disk
generates above itself using Coulombs law. From the rotational symmetry of the problem we know that
along the 𝑧-axis above the center of the disk, the electric field will only have a 𝑧-component. It can be
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calculated in the following way:

𝐸
𝑑,𝑢 (𝑧) = 1

4𝜋𝜖0

∫ 2𝜋

0
d𝜙

∫ 𝑅

0
d𝑟 𝑟𝜎𝑑,𝑢

𝑏

𝑧

(𝑧2 + 𝑟
2)3/2 =

𝜎
𝑑,𝑢

𝑏

2𝜖0

(
1 − 𝑧√︁

𝑅
2 + 𝑧

2

)
, (2.62)

where 𝑅 is the radius of the piezoelectric disk and 𝑧 is the distance above the disk. The total electric
field above the disk will then be given by the following equation where the surface charge densities are
already plugged in:

𝐸 (𝑧) = 𝐸
𝑢 (𝑧) + 𝐸

𝑑 (𝑧 + 𝑏) = −
𝑒33𝑆0
2𝜖0𝜖𝑟

©­­«
𝑧√︁

𝑅
2 + 𝑧

2
− 𝑧 + 𝑏√︃

𝑅
2 + (𝑧 + 𝑏)2

ª®®¬ . (2.63)

Here, 𝑏 is the thickness of the piezoelectric disk. Since our disk has the thickness of half an acoustic
wavelength, so on the order of 1 µm, we can assume that the distance 𝑏 is small compared to the distance
𝑧 above the disk (the atoms will be trapped around 50 µm away). We can therefore expand Eq. (2.63)
around 𝑏/𝑧 = 0 and get:

𝐸 (𝑧) ≈
𝑒33𝑆0
2𝜖0𝜖𝑟

𝑅
2
𝑏√︁

𝑅
2 + 𝑧

23 + O
(
𝑏

2
)
. (2.64)

This equation allows us to consider two interesting limits.

1. If the radius of the piezoelectric disk is much larger than the distance 𝑧 between disk and atom, we
can neglect the 𝑧

2 term in the denominator and therefore expect to have a weak electric field above
the disk that does not change with the distance 𝑧.

2. If the radius of the piezoelectric disk is small compared to the distance 𝑧 between disk and atom,
we can neglect the 𝑅

2 term in the denominator and get a dipole-like electric field with a 1/𝑧3

dependence. This is the case that the disk can be approximated as a dipole.

To explicitly evaluate the electric field above the piezo, the single phonon strain 𝑆0 needs to expressed
explicitly. For a uniform strain in the disk, this can be expressed through the zero point fluctuation of the
displacement field [56] and the piezo disk thickness 𝑏 which results in:

𝑆0 =

√︄
4ℏ

𝜌𝜋𝑅
2
𝜔𝑏

2 , (2.65)

where 𝜌 is the density of the material and 𝜔 is the angular frequency of the acoustic mode. Inserting
this into Eq. (2.64) and setting 𝜖𝑟 to one reproduces the results for the electric field strength from Ref
[56] (𝐸𝑧 (𝑧 = 5 µm) ≈ 1.7 V m−1 using same material and geometry parameters). However, as explained
before, this overestimates the electric field strength as it does not take the dielectric response of the
piezoelectric material into account. Taking this into account by setting 𝜖𝑟 = 9 reproduces the result for
the field strength expected from numerical simulations which is about one order of magnitude smaller
[62].

The next thing to realize in Eq. (2.64) is that the optimal choice of the disk radius (or later the acoustic
mode waist) depends on the distance we want to have between the disk and the atoms. Furthermore, it
determines the homogeneity of the electric field at the atom position. A larger disk radius (or larger
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mode waist) leads to a more homogeneous electric field at the atom position at the cost of an overall
weaker electric field. This optimal choice of piezo disk radius can be calculated. For this we can use
Eq. (2.64) from above to calculate

𝜕𝐸 (𝑧)
𝜕𝑅

!
= 0 , (2.66)

which results in the following:
𝑅
𝐸max(𝑧) = 𝑧

√
2
. (2.67)

This means that the disk radius that maximizes the electric field at a given distance 𝑧 scales linearly with
𝑧.

In summary, the analytic model show that the relevant material figure of merit is the ratio 𝑒33/𝜖𝑟 ,
rather than 𝑒33 alone as assumed in Ref. [56]. This follows from the derivation that the total polarization
is given by 𝑃tot ≈ 𝑃𝑆/𝜖𝑟 , which shows that the dielectric response of the piezoelectric material reduces
the effective polarization. Eq. (2.64) allows us to calculate explicit electric field strengths. Moreover,
the results shows a linear dependence: The disk radius that maximizes the electric field at a given
atom–surface distance scales linearly with that distance.

Beyond these results, we can use the model to derive important scaling laws of the electric field
in dependence of system parameters like the resonance frequency. Furthermore, we can qualitatively
predict the effect of a dielectric substrate. Both points will be addressed in the next Section.

2.2.4 Scaling Laws of the Electric Field Strength and Effects of Dielectric Substrate

In the following, Eq. (2.64) will be the basis to look at the electric field dependence on resonance
frequency and substrate thickness.

Scaling of Electric Field Strength with Resonance Frequency

In the HBAR, the resonance frequency determines the thickness of the piezoelectric dome. The dome
thickness is always chossen to be half an acoustic wavelength. In case of the simple disk model, this
means that the thickness 𝑏 is given as

𝑏 =
𝜆

AlN

2
∝ 1

𝜔
, (2.68)

where 𝜔 is the mode frequency. A higher frequency reduces the thickness of the dome. According to
Eq. (2.64), the electric field above the resonator fulfills the following proportionality to first order:

𝐸𝑧 (𝑧) ∝ 𝑏 · 𝑆0 , (2.69)

where 𝑆0 is the single phonon strain amplitude. For the Gaussian mode, we calculated this in Eq. (2.42).
The amplitude scales with

√
𝜔. Plugging Eqs. (2.42) and (2.68) into Eq. (2.69) leads to

𝐸𝑧 (𝑧) ∝ 𝑏 · 𝑆0 ∝
√
𝜔

𝜔
=

1
√
𝜔

. (2.70)

As a result, the electric field decreases with increasing frequency according to Eq. (2.70). This can be
understood intuitively. The strain amplitude increases for larger frequencies. However, the electric field
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decreases lineary when the dome thickness decreases as the two charge densities of opposite polarity
come closer together and cancel each other out stronger.

Scaling of Eletric Field Strength with Substrate Thickness

According to Eq. (2.64), the electric field is directly proportional to the single phonon strain amplitude
𝑆0. From Eq. (2.42), it directly follows that

𝐸𝑧 (𝑧) ∝
1
√
𝐿
, (2.71)

where 𝐿 is the total thickness of the resonator. Under the assumption that the dome thickness is small
compared to the substrate thickness 𝐿sub, it follows that

𝐸𝑧 (𝑧) ∝
1√︁
𝐿sub

. (2.72)

Effect of Dieletric Substrate

To understand the effect of the dielectric repsonse it is useful to stick to the picture of a charged plate
capacitor where the charges stem from the strain induced polarization. As shown before, we expect a
non-zero electric field outside the capacitor in case of finite plate radii. If we now place a dielectric
material directly below the lower capacitor plate, the field will induce a polarization inside the substrate
which means new bound charges will appear at the substrate-piezo interface. As the polarization tries to
cancle the electric field from the capacitor, these bound charges will be of opposite sign compared to
the bound charges at the lower capacitor plate. In total this means that there will now be an imbalance
in the charge densities of lower and upper capacitor plate. When looking at Eq. (2.63) with charge
densities |𝜎𝑢𝑏 | ≥ |𝜎𝑑𝑏 | one immediately noctices that this will lead to an enhanced field in vacuum above
the piezo. Effectivelly, the dielectric substrate pushes the electric field lines out of the substrate and into
the vacuum. This means that a dielectric substrate will lead to an enhanced electric field above the piezo
compared to a non-dielectric substrate, an effect that will enhance the coupling to the atoms.

Two relevant aspects are not captured yet. First, the strain inside the piezo disk is not uniform but
follows a Gaussian mode shape, as we saw in Section 2.1.4, which will modify the charge distribution
and the resulting field above the device. Second, the effect of the dielectric property is only qualitatively
understood. Both points will be addressed with the numerical simulation in the next Section.

2.3 Numerical Simulations

In the previous section, we understood how the piezoelectric effect generates an oscillating electric field
above the HBAR by a strain induced bound charge density where a simple constant strain breathing
mode was assumed. Furthermore, we have discussed quantitatively the effect of the dielectric substrate
and dervived scaling laws, e.g. for the scaling with the mode frequency. In this section, the electric field
will be simulated for a real Gaussian acoustic mode of an HBAR. For these simulations we will use the
finite element method (FEM) to solve the problem. We will first look into a static simulation where we
will solve the electrostatic problem for a given bound charge density which will allow us to simulate the
electric field above the HBAR in dependence of important design parameters as e.g. the acoustic mode
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waist and the resonance frequency. The results will later be used to calculate the coupling strength to the
atoms. In a second step, we will look into an eigenfrequency simulation where we will solve the coupled
mechanical and electrical problem to obtain the acoustic mode shapes, frequencies and the electric field
of the HBAR. This will allow us to validate the results from the electrostatics simulation and to use it in
more complex simulation setups in the future.

2.3.1 FEM Electrostatic Simulation: Setup

The problem is solved using the electrostatics module in COMSOL Multiphysics, a FEM simulation
software [84]. The simulation procedure, physical assumptions and results are described in detail below.

Geometry and Materials

The geometry used in the electrostatic FEM simulations is shown in Fig. 2.5. It consists of three
cylindrical domains: a large cylinder representing the sapphire substrate, a thin disk on top representing
the piezoelectric AlN layer, and a finite cylindrical vacuum region around the resonator. In addition, a
ground plane below the HBAR can be included to represent the atom chip ground plane.

The piezoelectric layer is modeled as a flat disk. In the actual device the layer has a slight dome
curvature, but the radius of curvature (∼ 10 mm) is much larger than the distance between piezo
and the atoms (∼ 50 µm). Therefore, this curvature has a negligible influence on the electric field
distribution, which is determined by the strain induced polarization. The curvature is only important for
the confinement of the acoustic modes. This will be validated in Section 2.3.4.

The material domains are represented by their dielectric properties. The vacuum region is modeled
with relative permittivity 𝜖𝑟 = 1. The AlN layer is assigned a relative permittivity of 𝜖AlN

𝑟 = 9. The
sapphire substrate is modeled either with its actual dielectric constant 𝜖Sap

𝑟 = 11.6 or artificially set
to 𝜖

Sap
𝑟 = 1, in order to compare the case of a dielectric and a non-dielectric substrate. Mechanical

material parameters are not required in this study. Instead, the source of the electric field is a fixed space
charge density inside the AlN disk, which represents the bound charges that arise from the strain-induced
polarization. The explicit form of this distribution and its implementation are described in the next
subsection. The explicit dimensions of all domains are listed in Table 2.1.

Physics Module Setup

For this simulation, only COMSOL’s Electrostatics interface is required. From Eq. (2.48) we know that
the total polarization inside a piezoelectric material can be decomposed into a strain-induced part and a
dielectric response part. If we can compute the strain-induced polarization, the induced bound charge
densities can be derived from it. The dielectric response can then be included in the simulation via the
material permittivities. This way, no mechanical properties are neeeded in the simulation.

To use this method, we start with Eq. (2.32) where we wrote down the strain component 𝑆3 of a
fundamental Gaussian mode which we expect to have in our resonator. From Eq. (2.57) and Eq. (2.58) we
can derive the corresponding bound charge densities that are induced by the strain via the piezoelectric
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Sapphire
substrate

AlN

atom position

0.1 mm

Vacuum

Ground plane

Figure 2.5: Geometry of FEM electrostatics simulation. The piezo disk (AlN) and substrate (sapphire) are modeled
as cylinders, with a vacuum cylinder surrounding the entire structure. Explicit dimensions are listed in Table 2.1.
The atom position is sketched qualitatively. The red circle below the substrate represents the chip ground plane.

Table 2.1: Geometry dimensions used in the electrostatics FEM simulations of the HBAR system. The piezo
disk and substrate are modeled as cylinders, with a large vacuum cylinder surrounding the entire structure and a
vacuum region of interest (ROI) above the piezo. The vacuum ROI is just the region where the electric field will
be evaluated and has therefore a finer mesh.

Parameter Description Value / µm

ℎpiezo Piezo disk thickness 0.93
𝑅piezo Piezo disk radius 150
𝐿sub Substrate thickness 160
𝑅sub Substrate radius 250
ℎvac,ROI Vacuum ROI cylinder height 280
𝑅vac,ROI Vacuum ROI cylinder radius 150
ℎvac,large Large vacuum cylinder height 1 000
𝑅vac,large Large vacuum cylinder radius 400

effect. In follows that

𝜎𝑏 = 0 (2.73)

𝜌𝑏 (𝑟, 𝑧, 𝑡) = −𝑒33
𝜕𝑆3
𝜕𝑧

= 𝜌0 exp

(
− 𝑟

2

𝑤
2

)
cos

(𝜋𝑧
𝑏

) (
𝑒
−𝑖𝜔𝑡 + 𝑒

𝑖𝜔𝑡
)
, (2.74)

where 𝜌𝑏 (𝑟, 𝑧, 𝑡) is the bound volume charge density inside the piezoelectric layer, 𝜎𝑏 is the bound
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surface charge density at the top and bottom surfaces of the piezoelectric layer, 𝜌0 is the amplitude of the
charge density and 𝑏 is the thickness of the piezo layer. As discussed in Section 2.2.1, we can ommit the
time dependence and just calculate the static electric field distribution because the atoms are located in
the near field. This gives us the following expression for the static charge density distribution:

𝜌𝑏 (𝑟, 𝑧) = 2𝜌0 exp

(
− 𝑟

2

𝑤
2

)
cos

(𝜋𝑧
𝑏

)
. (2.75)

In principle, this is already sufficient to use as an input for the simulation, however, we are intersted in
the electric field that a single phonon generates. Therefore, we have to determine the amplitude 𝜌0 that
corresponds to a single phonon in the resonator. For this, we use Eq. (2.42) where we calculated the
single phonon strain field. From this it directly follows that the amplitude of the charge density is given
by:

𝜌0 = −𝑒33
𝑆0𝜋

𝑏
=

√√
2ℏ𝜔𝜋𝑒2

33

𝑐33𝐿𝑤
2
𝑏

2 . (2.76)

Since the piezo layer thickness is small compared to the thickness of the substrate, we use the stiffness
constant of the substrate for 𝑐33 as this determines the strain amplitude. Eq. (2.76) can now be
implemented into the simulation using an analytic function in the Definitions node. To actually set the
strain induced charge density, a fixed Space Charge Density is set in the electrostatics node where the
analytic function is used as the input. The dielectric response requires no further considerations as it is
already included via the material permittivities.

Meshing Procedure and Study Configuration

Having established the electrostatic model, we proceed with the meshing and study configuration in
COMSOL. In a FEM simulation, meshing refers to the discretization of the simulation volume into
small, discretized volume elements on wich the associated differential equations are solved. Depending
on the problem, the results can be very sensitive to the exact mesh choice [79].

Fig. 2.6 shows the full meshed geometry. The vacuum cylinder sorounding everything is meshed
using a Free Tetrahedral of Normal size to reduce mesh complexity. The HBAR substrate, piezo layer
and vacuum ROI cylinder are meshed using a combination of Free Triangular mesh and Swept mesh. A
free triangular mesh of Extra Fine size is applied to the vacuum cylinder top surface and swept along
the 𝑧-direction until the substrate piezo interface. A finer swept mesh is used in the piezo layer with 8
elements along the 𝑧-direction because it is cruicial to fully resolve the three-dimensional charge density
distribution in this region. A second free triangular mesh is applied to the top substrate surface and
swept down to along the bottom substrate to the bottom vacuum cylinder surface.

All studies are stationary studies with default settings. The substrate is set to vacuum or dielectric
properties to check the influence of the dielectric response. Furthermore, from Section 2.2.3 we expect
to have an optimal acoustic mode waist for each atom resonator distance. For this reason, the studies are
performed for different acoustic mode waists 𝑤 using a parametric sweep. In addition, the substrate
thickness is varied to check the influence of the substrate on the electric field strength and the frequency
of the mode is varied to check the dependence on it. The convergence of the results was checked by
decreasing the mesh size until convergence of the result (the electric field) was observed.
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Figure 2.6: Meshed geometry of the electrostatics simulation. The right inset shows a zoom into the piezo layer
with a higher number of vertical mesh nodes compared to the rest to fully resolve the charge density distribution.
For dimensions check Fig. 2.5 and Table 2.1.

2.3.2 FEM Electrostatic Simulation: Results

The following section presents the results from the simulation and its relevance for coupling the HBAR
to Rydberg atoms. The coupling strength between the resonator and the atoms is ultimately set by the
electric field amplitude at the atomic position. Understanding the field distribution above the resonator is
therefore essential for estimating the achievable coupling strengths and for identifying optimal device
parameters.

Several aspects are important. The dependence of the electric field strength on the atom–resonator
distance directly determines how strongly atoms interact with the resonator at a given separation.
The field also depends on the acoustic mode waist (see Eq. (2.67)), which sets the optimal waist for
a particular atom–resonator distance and indicates how sensitive the coupling is to the exact atom
position. This determines how many atoms at different positions can simultaneously couple well to the
resonator. Furthermore, substrate thickness and dielectric properties influence both the distribution and
the amplitude of the field and are therefore important factors in understanding the overall atom–resonator
interaction. Finally, the frequency dependence of the field is relevant for understanding how the coupling
strength changes when tuning the resonator frequency to different atomic transitions.

The simulation was performed for different acoustic mode waists between 10 µm - 40 µm and with a
substrate thickness of 160 µm. Fig. 2.7(a) shows the electric field above the piezo for a mode waist of
𝑤 = 32 µm. The field is strongest directly above the center of the piezo and decreases with increasing
distance. The streamlines in the plot represent the orientation of the electric field showing a behaviour
typical to an electric dipole. As expected from Section 2.2.4, the dielectric substrate pushes the electric
field out of the substrate and into the vacuum causing an asymmetry which enhance the field at the
position of the atoms.
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(a) (b)

Figure 2.7: (a) shows the electric field above and inside the resonator in the 𝑦𝑧-plane for 𝑥 = 0. The absolute electric
field amplitude is color coded and the streamlines represent the direction of the electric field. The simulation
was performed for a mode waist of 𝑤 = 32 µm and a substrate thickness of 𝐿sub = 160 µm. (b) shows the electric
field amplitude above the center of the piezo in dependence of distance to the disk and acoustic mode waist. The
scattered points are the points of maximum electric field given a fixed atom-resonator distance. The dashed line is
a linear fit to these points.

Dependence of the electric field on atom-resonator distance and acoustic mode waist

As mentioned above, the shape depends on the acoustic mode waist. Fig. 2.7(b) shows the amplitude of
the electric field 𝐸𝑧 above the center of the piezo in dependence of distance to the disk and the mode
waist. As expected from Eq. (2.64), the dependence of the field amplitude on the distance is much
stronger for smaller acoustic mode waists than for larger ones. This is because the smaller the mode
waist is the faster the field lines push outwards to the left and right and therefore the field above the piezo
decreases faster. However, because they are more concentrated close to the surface, the field is larger in
amplitude at close distances. The scattered points in Fig. 2.7(b) are the points of maximum electric field
given a fixed atom-resonator distance. One can see a linear relation between the acoustic mode waist and
the distance. This agrees with the expectation from the analytic model from Eq. (2.67). A linear fit to
the data gives the following results:

𝑤
𝐸max(𝑧) = 0.57 · 𝑧 + 3.79 µm , (2.77)

where 𝑤
𝐸max(𝑧) is the optimal mode waist for a given atom-resonator distance 𝑧. For comparison, the

analytic result (neglecting the Gaussian mode shape completely) Eq. (2.67) gives a proportionality
factor of ≈ 0.7. As a rule of thumb we can conclude that the optimal acoustic mode waist for a given
atom-resonator distance is roughly half the distance. However, it becomes clear that the exact choice
of the mode waist becomes less cruical the further away we are. The spatial variation in electric field
amplitude is smaller for larger mode waists as shown in Fig. 2.7(b).

For a better visualization of Fig. 2.7(b) we can take a look at Fig. 2.8. It shows the maximally
achievable electric field above the piezo for different atom-resonator distances when choosing the optimal
acoustic mode waist according to Eq. (2.77) (shown in orange). The electric field in dependence of
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Figure 2.8: Electric field amplitude above the piezo in dependence of atom-resonator distance for a substrate
thickness of 𝐿sub = 160 µm. The orange line shows the maximally achievable electric field when choosing the
optimal acoustic mode waist according to Eq. (2.77). The blue line shows the electric field for a fixed mode waist
of 𝑤 = 32 µm which is optimal for an atom-resonator distance of 50 µm. The small deviation from the -1/2 scaling
law for the non-dielectric case is caused by the fact that the piezo layer is not included in the substrate thickness.

the distance for a fixed mode waist of 𝑤 = 32 µm, which is optimal for an atom-resonator distance of
50 µm, is shown in blue. One can see that for distances larger than ∼ 30 µm there is no significant gain
in changing this acoustic mode waist.

Dependence of the electric field on substrate thickness and dielectric properties

The next interesting thing to look at is the dependence of the electric field on the substrate thickness and
its dielectric properties. For this, a fixed mode waist of 𝑤 = 32 µm is chosen and the substrate thickness
𝐿sub is varied between 1 µm and 400 µm for the the case of a dielectric substrate and a non-dielectric
substrate. Fig. 2.9 shows the resulting electric field at a fixed distance of 50 µm above the piezo. One
can see that for 𝐿sub ≳ 20 µm the electric field amplitude scales as

𝐸𝑧 ∝
1√︁
𝐿sub

, (2.78)

which was expected from Eq. (2.72). Furthermore, the electric field is significantly enhanced for the case
of a dielectric substrate compared to a non-dielectric substrate by almost a factor of two. This is again
expected from the qualitative discussion in Section 2.2.4. For 𝐿sub < 20 µm, the electric field starts to
deviate from the scaling law in Eq. (2.78) and approaches the solution for a non-dielectric substrate for
very thin substrates (𝐿sub ∼ 1 µm). This can be explained by the fact that for very thin substrates, the
layer can not screen the electric field as effectively as a bulk substrate can, leading to a behavior that
is more similar to the non-dielectric case. However, the resonators we are intersted in have substrate
thicknesses of > 100 µm, which means Eq. (2.78) is valid.

Dependence of the electric field on resonance frequency

The simulation was performed for a fixed resonance frequency of 𝑓𝑚 = 5.8 GHz, but we would like to
know the scaling of the electric field amplitude with frequency. In the simulation, the resonance frequency
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Figure 2.9: Electric field amplitude above the piezo in dependence of substrate thickness for a fixed atom-resonator
distance of 50 µm and a fixed acoustic mode waist of 𝑤 = 32 µm. The blue points are simulation results and show
the case of a dielectric substrate (𝜖Sap

𝑟 = 11.6) and the orange points show the case of a non-dielectric substrate
(𝜖Sap
𝑟 = 1). The dashed line is of slope −1/2 which represent the expectation from Eq. (2.78).

enters in the single phonon strain amplitude in Eq. (2.42) and in the thickness of the piezoelectric layer,
which is half an acoustic wavelength 𝜆

AlN. In Section 2.2.4, we derived Eq. (2.70) that predicts a scaling
of

𝐸𝑧 ∝
1√︁
𝑓𝑚

. (2.79)

To verify this, the electric field was simulated for different resonance frequencies between 2 GHz and
12 GHz. Fig. 2.10 shows the resulting electric field at a distance of 50 µm above the piezo. One can see
that the simulated field follows the expected scaling law from Eq. (2.79).

Combining the results

With the knowledge of the scaling laws for the electric field in dependence of substrate thickness and
resonance frequency, we can now express the electric field at a given position 𝑧 above the piezo for
arbitrary substrate thicknesses, resonance frequencies and acoustic mode waists as:

𝐸𝑧 (𝑧, 𝐿sub, 𝑒33, 𝑤, 𝑓𝑚) = 𝐸
sim
𝑧 (𝑧, 𝑤)

√︄
160 µm
𝐿sub

√︄
5.8 GHz

𝑓𝑚

𝑒33

1.55 C m−2 , (2.80)

where 𝑒33 is the piezo constant, 𝐿sub is the substrate thickness, 𝑓𝑚 is the mode frequency, 𝑤 is the
acoustic mode waist and 𝐸

sim
𝑧 (𝑧, 𝑤) is the electric field for a substrate thickness of 160 µm, a piezo

constant of 𝑒33 = 1.55 C m−2 and a mode frequency of 5.8 GHz. The piezo constant is included here to
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Figure 2.10: Electric field amplitude above the piezo in dependence of resonance frequency for a fixed atom-
resonator distance of 50 µm, a fixed acoustic mode waist of 𝑤 = 32 µm and a substrate thickness of 𝐿sub = 160 µm.
The blue points are simulation results and the dashed line follows a function of the form 𝐸𝑧 ( 𝑓𝑚) = 𝐴 · 𝑓 −1/2

𝑚 which
represent the expectation from Eq. (2.79) where the amplitude 𝐴 is a fit parameter.

be able to scale the results in dependence of this material constants as there are significant differences in
literatures where values range from 𝑒33 = 1.46 [85] to 𝑒33 = 2.25 [46]. A linear scaling is expected from
Eq. (2.76). Another thing to note is that the existence of a ground plane mimicking the atom chip had no
influence on the electric field of the HBAR and was therefore not included in any further discussions.

In summary, the electrostatic FEM simulations give us a qualitative understanding of the shape
and scaling of the electric field above the HBAR. The dependence on acoustic mode waist, frequency,
substrate thickness, dielectric properties, and piezoelectric material constants is now understood. Based
on Eq. (2.80), the electric field at a given position 𝑧 can be calculated for arbitrary system parameters.
Furthermore, the simulated field shape for a given mode waist can be used to assess the spatial
homogeneity of the field at the position of the atoms, which might be of interest in the future.

An important advantage of this method is that it decouples the acoustic mode simulation from the
electric field simulation, which enables efficient parametric sweeps over acoustic mode waists and
substrate thicknesses (and other parameters). Such studies would be more time-consuming in a fully
coupled simulation. For example, the mode waist sweep between 10 µm and 40 µm with a substrate
thickness of 160 µm can be completed in about 5 minutes on a PC with 16 GB RAM, while a coupled
simulation of the same system evaluates only a single waist and a thin substrate of 30 µm but requires on
the order of 2 hours.

The next section will compare these results to a full COMSOL eigenfrequency simulation of the
coupled system, where both the acoustic and piezoelectric dynamics are included. Such a coupled
simulation is valuable to verify the validity of the electrostatic method. However, since the results show
good agreement (which we will see in the next Section), the electrostatic approach provides a significant
speed advantage for parametric sweeps.

2.3.3 FEM Eigenfrequency Simulation: Setup

In Section 2.2 we introduced a simplified analytic model of the HBAR, where the piezoelectric disk
was assumed to undergo a uniform breathing mode and the substrate was treated as non-dielectric. This
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Table 2.2: Geometry dimensions used in the eigenfrequency FEM simulations of the HBAR system. The substrate
is modeled as half-cylinders with a dome-shaped piezo layer on top, surrounded by a vacuum half-sphere and a
vacuum region of interest (ROI) above the dome.

Parameter Description Value / µm

ℎAlN Piezo dome thickness 0.94
𝑅dome,curv Piezo dome radius of curvature 10 000
ℎSap Substrate thickness 28
𝑅Sap Substrate radius 250
𝑅vac,sphere Vacuum sphere radius 300
𝑅vac,ROI Vacuum ROI cylinder radius 50
ℎvac,ROI Vacuum ROI cylinder height 100

allowed us to estimate the oscillating electric field and gain intuition for the relevant physics but neglected
realistic mode profiles and substrate effects. In Section 2.1.4 we identified that the relevant acoustic
mode has a Gaussian profile, and in Section 2.2.4 we showed that the dielectric substrate modifies the
field beyond a simple rescaling of the single-phonon displacement amplitude. These effects motivated
the electrostatic simulations in Section 2.3.1, where the Gaussian mode shape and substrate permittivity
were taken into account.

A further approximation made so far was to treat the acoustic problem independently of piezoelectricity,
i.e. to determine mode shapes and frequencies solely from linear elasticity and then calculate the electric
field in a separate step. In the following we relax this assumption by directly simulating the fully coupled
piezoelectric system. This will allow us to quantitatively validate the electrostatic simulation results.

Geometry and Materials

The geometry of the simulation is shown in Fig. 2.11. It consists of the sapphire substrate (half cylinder
of largest radius), the piezo dome (thin layer on top of the substrate), and a half sphere of vacuum
surrounding the HBAR. One can see that both the piezo dome and the substrate are divided into half
cylinders of different radii, which is solely for meshing purposes. The meshing will be discussed in
more detail later. Furthermore, the half sphere of vacuum is also divided into the half sphere and a half
cylinder above the piezo dome. This is also motivated by the meshing, as we want to have a higher mesh
resolution in the region of interest above the piezo dome. Fig. 2.11 also shows a zoomed-in front view of
the 𝑦𝑧-plane. Here one can see the piezo dome which appears flat from further away because of the
large radius of curvature compared to the thickness. Explicit dimensions of the geometry are provided in
Table 2.2

The simulation volume is composed of three different materials. For the sphere around the HBAR we
use Perfect Vacuum with a density of zero and a relative permittivity of one. The HBAR substrate and
the AlN piezo dome are both user-defined anisotropic materials. For both sapphire and AlN, relative
permittivity, the full stiffness tensor 𝑐𝑖 𝑗 , and (for AlN) the piezoelectric tensor 𝑒𝑖 𝑗 are specified in
Voigt notation, as listed in Table 2.3. In particular, the constant 𝑐33 enters the simple velocity estimate
used below. The 𝑧-axis of the global coordinate system is aligned with the crystallographic 𝑐-axis of
both materials, so that the longitudinal acoustic propagation we simulate corresponds directly to the
experimentally relevant 𝑐-axis orientation.
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Figure 2.11: Geometry used in the eigenfrequency FEM simulation of the HBAR system. The geometry consists
of a sapphire substrate, an AlN piezo dome, and a surrounding vacuum region. The lower inset shows a zoomed-in
front view of the 𝑦𝑧-plane, where the piezo dome is visible. The dimensions are listed in Table 2.2.

The thicknesses ℎSap of the substrate and ℎAlN of the piezo layer are chosen such that the longitudinal
standing-wave condition is fulfilled at the target frequency 𝑓𝑚. For the AlN layer we set the thickness to
half an acoustic wavelength,

ℎAlN =
𝜆AlN

2
, (2.81)

while for the sapphire substrate the thickness corresponds to 𝑚 − 1 half-wavelengths,

ℎSap = (𝑚 − 1)
𝜆Sap

2
, (2.82)

where 𝑚 is the longitudinal mode index. Using the longitudinal acoustic velocities 𝑣 =
√︁
𝑐33/𝜌 in the

respective materials, the thicknesses can be expressed in terms of the target frequency 𝑓𝑚 as

ℎAlN =
1

2 𝑓𝑚

√√
𝑐

AlN
33

𝜌
AlN (2.83)

ℎSap =
𝑚 − 1
2 𝑓𝑚

√√
𝑐

Sap
33

𝜌
Sap . (2.84)

Physics Modules Setup

To simulate the eigenmodes of the HBAR we use three physics modules: solid mechanics, electrostatics,
and the piezoelectric multiphysics interface which couples the first two. In the following we summarize
the key settings and boundary conditions that are not automatically implied by the software but are
essential to reproduce the correct physics.
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Table 2.3: Relevant material parameters for sapphire (substrate) and AlN (piezo) used in the simulation. Matrix
elements are given in Voigt notation. Values are taken from [79] (except 𝜖Sap

𝑟 which was set to 9 in Ref [79]).

Parameter sapphire (Substrate) AlN (Piezo)

Relative permittivity 𝜖𝑟 11.6 9.0
Density 𝜌 / kg m−3 3980 3300
Elasticity matrix 𝑐𝑖 𝑗 / GPa 𝑐11 = 496

𝑐33 = 499
𝑐44 = 146
𝑐12 = 159
𝑐13 = 114
𝑐14 = −23

𝑐11 = 411
𝑐33 = 389
𝑐44 = 125
𝑐12 = 149
𝑐13 = 99

Piezoelectric matrix 𝑒𝑖 𝑗 / C m−2 – 𝑒33 = 1.55
𝑒31 = −0.58
𝑒15 = −0.48

Solid mechanics. The elastic response is described within linear elasticity, using the full anisotropic
stiffness tensor 𝑐𝑖 𝑗 (see 2.1). The global coordinate system is aligned such that the 𝑧-axis coincides with
the crystallographic 𝑐-axis of both sapphire and AlN. This ensures that longitudinal propagation along 𝑧

corresponds to the experimentally relevant orientation. All outer boundaries are stress-free, representing
the case of a mechanically free-standing resonator. To suppress spurious transverse solutions we constrain
the in-plane displacements (𝑢𝑥 and 𝑢𝑦) to zero (according to [79]), so that the solver preferentially
converges to longitudinally polarized modes, in line with the physics of interest. To avoid artificial
reflections from the truncation of the computational domain, low-reflecting boundary conditions are
imposed at the outer radial boundary of the substrate.

Piezoelectric coupling. Piezoelectricity is included via the multiphysics coupling, which links the
elastic strain to the electric polarization through the tensor 𝑒𝑖 𝑗 using the constitutive equations that were
introduced in Eq. (2.16).

Electrostatics. No additional conditions are required beyond those automatically applied, apart from
the treatment of symmetry (see below). The surrounding vacuum is modeled as a dielectric medium
with 𝜖𝑟 = 1, which allows the piezo-induced field to extend out of the resonator into free space.

Symmetry. Because the expected solutions of Laguerre and Hermite-Gaussian modes [79] are invariant
under mirror reflection through the 𝑥𝑧-plane, we can exploit this symmetry to reduce the simulation
volume. We therefore restrict the domain to a half cylinder (cut through the 𝑥𝑧-plane) and apply a
symmetry boundary condition at the cut plane. This reduces the computation time. Care must be taken,
however, when later normalizing fields by volume integrals, as the integration has to be rescaled to
account for the reduced simulation domain.

In case one is only interested in modes that are rotationally symmetric one could even reduce the
problem to a two-dimensional simulation having 𝑧 and 𝑟 as coordinates. However, we would like
to have the possibility to look at non-rotationally symmetric modes as well, as they would allow to
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couple to different types of atomic transitions (will be discussed in Section 3.1) which is why the full
three-dimensional simulation it kept.

Meshing procedure and study configuration

Since the accuracy of any FEM simulation is limited by the quality of the spatial discretization, we first
outline the meshing strategy adopted for the HBAR geometry which was guided by a publication that
simulates the coupling of an HBAR to a superconducting qubit [79, 86]. Afterwards, we describe the
solver configuration used to extract the eigenfrequencies.

When solving for the eigenmodes of the HBAR with FEM it is essential that the discretization resolves
the relevant physical length scales. In the GHz regime, acoustic wavelengths in sapphire are only a few
micrometers (acoustic wavelength at 6 GHz is about 2 µm) whereas the electromagnetic wavelength
is several centimeters. This large scale separation means that the mesh must be fine in the acoustic
resonator but can be much coarser elsewhere. In particular, the z-direction requires sufficient resolution
to capture the standing-wave pattern of longitudinal modes. We therefore impose at least 8 elements per
acoustic wavelength in the substrate and piezo layers. Radially, a coarser discretization is sufficient, as
the mode profile varies more slowly.

The resulting mesh distribution is illustrated in Fig. 2.12. To keep the problem tractable, the mesh
density is gradually reduced away from the active region: the inner resonator volume (substrate plus thin
piezo layer) is discretized with a structured mesh of high resolution, which transitions into a coarser
unstructured mesh in the surrounding substrate and vacuum. In the vacuum domain, where the electric
field varies only slowly, the mesh is refined only in the small region above the piezo dome where the
field will later be sampled. The convergence of the results was checked using a mesh refinement study.
For that, the mesh density inside the active region was varied (number of elements in z direction and
number of mesh nodes in the plane). As a figure of merit, the deviation between the simulated strain
profile and a perfect Gaussian envelope (in the plane in the middle of the piezo) was used. An example
for the mapped mesh (inner mesh of HBAR cylinder) is shown in Section A.1.

To compute the eigenmodes we used COMSOL’s Eigenfrequency Study with the iterative ARPACK
solver. The solver was instructed to search for eigenvalues around a shift frequency close to the simple
standing-wave estimate from Section 2.3.3. This procedure accelerates convergence and ensures that the
physically relevant solutions are found. We typically requested 60 eigenfrequencies around the shift to
capture at least the fundamental Gaussian mode and ideally a few higher order modes as well. Apart
from these settings, the default solver parameters were used.

Field Normalization

The eigenfrequency solver returns the mode shapes and frequencies. An output mode shape of e.g. the
displacement field will have the following form:

®𝑢(®𝑟) = 𝐻𝑧 (®𝑟)𝑒
𝑖𝜙
𝑒𝑧 , (2.85)

where 𝐻𝑧 (®𝑟) is the spatial mode function and 𝜙 is an arbitrary phase. The same form applies to the other
physical quantities such as the electric field. However, the absolute amplitudes of the fields are arbitrary
because the solver does not impose any normalization condition. Since all differential equations are
linear, any scaled version of a solution is also a valid solution. To extract physically meaningful quantities
such as the single-phonon electric field, we therefore need to impose a normalization condition.
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Figure 2.12: Mesh used in the eigenfrequency FEM simulation of the HBAR system. The mesh is fine along
the 𝑧-direction in the resonator region to resolve the acoustic wavelength, and gradually coarsens away from the
resonator. The left inset shows a zoomed-in view of the mode confining region of substrate and piezo dome and a
small part of the vacuum above. The mesh node density in 𝑧-direction is high in the resonator compared to the
radial direction and the vacuum region. The right inset shows a zoomed-in view of the HBAR center from the top
which shows the in plane mesh structure in the mode confining region.

To do so, we use Eq. (2.36) where we calculated the single phonon strain field for an acoustic mode.
We ended up with the following result:

𝑢𝑧 (®𝑟, 𝑡) =

√︄
ℏ

2𝜌𝜔
𝑒
−𝑖𝜔𝑡

𝐴𝐻𝑧 (®𝑟) · 𝑒𝑧 + c.c. , (2.86)

where 𝐻𝑧 (®𝑟) is the unnormalized mode shape function we now get from our simulation (here assuming a
polarization only in 𝑧-direction). The product of 𝐴 and 𝐻𝑧 (®𝑟) is the normalized mode shape function
ℎ𝑧 (®𝑟). Therefore, we only have to numerically calculate 𝐴 according to:

𝐴 =

(
2
∫
𝑉HBAR

d𝑉 |𝐻𝑧 (®𝑟) |
2
)−1/2

. (2.87)

Important to note is the extra factor of 2 when comparing Eq. (2.37) with Eq. (2.87). This is because we
only simulate half of the HBAR volume due to the symmetry condition (see Section 2.3.3). The integral
therefore has to be rescaled by a factor of 2 to account for the full volume.

In COMSOL, we implement this normalization in the following way: A Volume Integration node is
added under the Definitions node with the operator name intop1. The integration volume is choosen to
include the complete substrate and the piezo dome. The normalization constant is then calculated using
the integration results by adding a Variable node in the Definitions with the following definition:

𝐴
′
= (2 · intop1(real(𝑤) · real(𝑤))) , (2.88)

where 𝑤 is the displacement field in 𝑧-direction as given by the solver. Note that we use the real part of
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Figure 2.13: 𝑆3 component of strain in the 𝑦𝑧-plane at 𝑥 = 0 for the fundamental Gaussian mode. The strain is
normalized to a single phonon using the procedure described in Section 2.3.3 and is given in units of 10−11. The
mode has a frequency of 5.81 GHz. The black lines represent the boundaries of the geometry domains. The part
below and above the mode is vacuum.

the field, real(𝑤), in the normalization calculation. This is an arbitrary choice, one could e.g. also use
the imaginary part imag(𝑤) or the magnitude |𝑤 |. Is is only important to stick to one convention in all
consequtive calculations.

With this result, all relevant physical quantities such as the electric field can now be properly normalized
to a single phonon by multiplying the raw solver output with the normalization constant

√
𝐴
′ and the single

phonon displacement amplitude 𝑢0 =
√︃

ℏ

2𝜌Sap
𝜔

(the reason for calculating 𝐴
′
= 𝐴

2 is that COMSOL can
not handle square roots of numbers with units of odd dimensions. Therefore, in COMSOL we actually
apply the square root to the product of 𝐴′ and 𝑢

2
0).

2.3.4 FEM Eigenfrequency Simulation: Results

The coupled eigenfrequency simulation serves to verify the results of the electrostatics-based FEM
approach and provides access to higher-order acoustic modes and their associated electric fields. Beyond
this validation, the method offers a framework to study more complex systems, such as coupling the
HBAR to a coplanar waveguide resonator, which will be briefly discussed in Section 2.5. In the following,
the results of the coupled simulation are presented and analyzed.

As discussed before, the substrate and piezo thickness were chosen to target the fundamental Gaussian
mode of mode index 𝑚 = 30 where the resonance frequency was expected to lie at 5.8 GHz, only taking
acoustics into account. The mode was found at 5.81 GHz which is close to the expected value (dev.
of about 0.2%). The strain profile of this mode is shown in Fig. 2.13 where the strain amplitude is
normalized using the method from Section 2.3.3. As expected, the strain follows a standing wave pattern
in 𝑧-direction, half a wavelength lies within the piezo and the mode is confined within the piezo dome in
𝑦-direction. Fig. 2.14 shows the displacement field in the 𝑥𝑦-plane (also normalized to a single phonon)
at the interface of substrate and piezo which follows a Gaussian shape.

Comparing the single phonon strain and electric field to the electrostatic simulation

One question that arises is if the strain inside the piezo follows the expected Gaussian profile from
Eq. (2.42). Especially it is of interest if the strain amplitudes match as this determines the amplitude of
the electric field. Fig. 2.15 shows the simulated strain profile along the 𝑦-axis at 𝑥 = 0 and 𝑧 = −𝜆

AlN

4
(center of piezo layer) for the fundamental Gaussian mode. A Gaussian profile was fitted to the data.
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Figure 2.14: 𝑧-component of the displacement field of fundamental Gaussian mode (same as in upper plot) at the
interface of substrate and piezo. The amplitude is normalized to a single phonon.

Figure 2.15: Single phonon strain profile inside the piezo (along the 𝑦-axis for 𝑥 = 0 at 𝑧 = −𝜆
AlN

4 ): Squares
represent the numerical result from the FEM eigenfrequecy simulation. A Gaussian profile was fitted to the data
to determine amplitude and acoustic mode waist. The second Gaussian profile shows the theoretically expected
profile (Eq. (2.42)) using the determined mode waist as an input.

Visually, the simulated profile matches the Gaussian profile. The determined mode waist and amplitude
is

𝑤 = 17.13 µm (2.89)

𝑆0 = 4.90 · 10−11
. (2.90)

The mode waist can be used as an input to the expected single phonon strain amplitue from Eq. (2.42) to
obtain the theoretically expected amplitude. This gives a value of 𝑆theo

0 = 4.81 · 10−11 which deviates
about 2% from the fit. This is also shown in Fig. 2.15. It means that the simulated strain profile is in
very good agreement with the analytic expression. The remaining deviation can be explained by the
fact that the stiffness constant and the material density of AlN and sapphire differ (see Table 2.3) which
means a small impedance mismatch. We would therefore expect to not have the exact same amplitude in
piezo layer and substrate.

The next thing to look at is the electric field. Fig. 2.16 shows the electric field that is generated by
the mode. Qualitatively the shape is the same as we already saw in the electrostatics simulation. One
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Figure 2.16: Electric field above the piezo dome. The absolute value of the electric field | ®𝐸 | is shown in units
of V m−1, normalized to a single phonon. The mode is the fundamental Gaussian mode with a frequency of
5.81 GHz. The black stream lines represent the orientation of the electric field vector. Artefacts at the interface of
the piezo dome with vacuum towards left and right are unphysical and stem from the coarser mesh distribution at
these positions.

thing to note are the artefacts at the vacuum piezo interface at the outer regions (left and right), this
is most likely due to the transition from the fine to coarse mesh which was discussed in Section 2.3.3.
However, as they are not apparent at the position of the mode or above they should not influence the
results significantly. To now compare this quantitavely to the results from the electrostatics simulation
we take a look at Fig. 2.17. Here, the electric field above the center of the piezo dome is shown as a
function of the distance to the dome surface. The result from the electrostatics simulation is included
for comparison. We can see very good agreement between both results. The deviation of 2% of the
strain amplitude is taken into account in the plot by normalizing the analytic strain amplitude to the
numerically simulated strain amplitude. This means that the electrostatics simulation indeed captures
the physics of the HBAR and can be used to efficiently calculate the electric field for different mode
waists and substrate thicknesses.

Higher order transverse modes

As mentioned in the beginning, we can not only look at the fundamental Gaussian mode but also at
higher order transverse modes. One example is shown in Fig. 2.18 where the strain profile of a higher
order transverse mode at 5.126 GHz is shown. Fig. 2.19 shows the displacement field of this mode at the
interface of substrate and piezo. IThe charge density that arises from this mode we can be thought of as
two separated dipoles with opposite phase which effectively leads to a quadrupole like bound charge
density distribution. We would therefore expect to see a quadrupole like electric field above the piezo
where the field should now point parallel to the piezo surface. This is indeed what we see in Fig. 2.20(a),
where the electric field above the piezo dome is shown. The electric field has a quadrupole like structure
as expected. In Chapter 3, we will discuss what kind of atomic transitions could be driven with such a
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Figure 2.17: Simulated electric field 𝐸 (𝑧) above the center of the piezo dome as a function of the distance to
the dome surface. Result from the FEM Eigenfrequency Analysis is shown in black, while the result from the
electrostatic simulation is shown in red. Here, both strain amplitudes are normalized to the same value (the
numerically calculated one).

field. For completeness, Fig. 2.20(b) shows the electric field 𝐸𝑦 (𝑧) above the piezo disk which is smaller
compared to the fundamental mode (Fig. 2.17) but in the same order of magnitude.

Figure 2.18: 𝑆3 component of strain in the 𝑦𝑧-plane at 𝑥 = 0 for a higher order transverse mode. The strain is
normalized to a single phonon using the procedure described in Section 2.3.3 and is given in units of 10−11. The
mode has a frequency of 5.8126 GHz. The black lines represent the boundaries of the geometry domains. The
part below and above the mode is vacuum.

Conclusion and Outlook

To conclude, the coupled eigenfrequency simulation reproduces the results of the electrostatics-based
approach. The strain profile inside the piezo and the electric field above the center of the dome are
consistent with the electrostatics simulation. Furthermore, a higher-order transverse mode was examined,
and the electric field distributions follow the expected quadrupole bahviour. With this simulation
framework established, it can also be applied to more complex coupled systems in the future, for example
including a coplanar waveguide resonator to study the coupling between HBAR and the resonator. We
will discuss in Section 2.5 why this is of interest for the experiment.
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Figure 2.19: 𝑧-component of the displacement field for a higher order transverse mode (same as in upper plot) at
the interface of substrate and piezo, amplitude is normalized to a single phonon.

(a) Electric field above the piezo dome. The absolute value
of the electric field | ®𝐸 | is shown in units of V m−1. The black
stream lines represent the orientation of the electric field
vector.
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(b) Electric field 𝐸𝑦 (𝑧) above the center of the piezo dome as
a function of the distance to the dome surface.

Figure 2.20: Electric field distribution above the piezo dome for a higher order transverse mode with a frequency
of 5.8126 GHz. Both results are normalized to a single phonon.

2.4 High-Q HBARs for the HQO Experiment

When we want to interface Rydberg atoms with an HBAR, we need to have an HBAR with sufficiently
high quality factor to get into the strong coupling regime. For this reason we decided to collaborate with
the group of Prof. Yiwen Chu at ETH Zürich, who are working with HBARs in their experiments and
reach high quality factors of ∼ 107 [54] in their experiments at frequencies around 6 GHz. Therefore,
Julia Gamper and me went to visit the research group in May 2025.

One important point for us is that the HBAR should have a high quality factor at 4 K. This is important
to check as their experiments are conducted at a few mK [46]. Fig. 2.21(a) shows quality factors of
a batch of HBARs measured at 4 K for different mode frequencies. One can see that slightly below
6 GHz, where the 85S-85P Rydberg-Rybderg transition lies (the transition we plan to work with), that
the best HBARs have quality factors exceeding 107 which corresponds to linewidths of ∼ 0.5 kHz (see
Fig. 2.21(b)). These values correspond to HBARs with 420 µm substrate thickness. In general, they
work with two different substrate thicknesses, 160 µm and 420 µm. This is important to keep in mind as
the substrate thickness influences both the coupling strength and the quality factor. A thicker substrate
corresponds to a higher quality factor but lower coupling strength (the best choice for the experiment
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(a) Quality factors at 4K. (b) Linewidth at 4K.

Figure 2.21: High-Q HBAR characterization measurements of fundamental mode for a batch of HBAR chips with
a substrate thickness of 420 µm. Images courtesy of Raquel Garcia, ETH Zurich.

needs to be specified in the future depending on the concrete atom chip design).
Another important point for our experiment is the width of the HBAR chip. For the Rydberg excitation,

two lasers need to be focused at the position of the trapped atoms. This means we will have focused
beams (few 10 µm) close to a chip surface. Ideally we do not want to have any clipping of the beams at
the chip edge for two reasons: Clipping would mean a distortion of the intensity profile of the beam.
Second, any heating by the lasers should be prevented. The second point is especially relevant for the
blue control laser at 480 nm as it usually outputs a few hundred milliwatts of power. As a consequence,
an HBAR chip as narrow as possible is beneficial to have more freedom in the choice of laser beam waist
and height position relative to the chip surface. For this reason, it was successfully tried out by members
of the group to dice HBAR chips into thin bars with widths < 1 mm. An image that was taken during the
dicing in shown in Fig. 2.22(a). Fig. 2.22(b) shows all ten HBARs that were brought to Bonn.

Fig. 2.23(b) shows a microscope image of one of the diced HBAR chip bars. The width was measured
to be around 700 µm. This gives us a figure of merit how thin we can get with the chip. Going for chips
of smaller widths is challenging for different reasons. The most obvious reason is that the dome of the
HBAR has to fit onto the chip. Second, a chip of smaller width is more likely to just fly away during the
dicing process. The last point is mechanical handling of the chip which gets a difficult for smaller widths.

To show that a width of around 700 µm is already sufficient for our experiment we can look at the plots
in Fig. 2.24(a) and Fig. 2.24(b). (a) shows the 780 nm probe beam profile and the top of the HBAR chip
for one slice through the center of chip and beam for a focus waist of 8 µm (as it is currently built in our
experiment [58]). (b) shows the same plot for the control beam at 480 nm (with a focus waist of 15 µm,
which is not fixed yet). The Figures show the scenario that both beams are positioned 35 µm above the
chip surface. This distance is already very optimistic but geometry wise possible, first experiments will
most likely be performed with the atoms further away (50 µm − 100 µm). For the chosen parameters,
there is no significant clipping (no clipping within twice the beam waist).

The available HBARs could already be used in the experiment, but their resonance frequencies and
quality factors need to be characterized first. At the same time, the simulation tools developed in the
previous Section now allow us to determine the electric field amplitude for any atomic transition, mode
waist, and substrate thickness. This enables us to think about the parameters most suitable for our
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(a) (b)

Figure 2.22: Image (a) taken during the dicing process at ETH Zurich. It shows a sapphire chip with 3x3 HBARs.
The chip was diced horizontally to get 3 thin bars with 3 domes on each bar. The domes are visible as the filled
ring structures on the bars. The black areas are the parts that were taken apart by the dicing saw. Image courtesy
of Julia Gamper. (b) shows ten diced HBAR chip bars (two flew away during the dicing) that were taken to Bonn,
in some of them one can see the three domes as light reflections. White numbers represent assigned labels which
will become important at the moment the HBARs are characterized.

(a) (b)

Figure 2.23: Size measurements of one of the diced HBAR chip bars. (a) shows the characterization of the dome
(dome radius and distance to neighbour). (b) shows the chip width along the beam propagation axis. The width
was measured to be around 700 µm. Images courtesy of Raquel Garcia, ETH Zurich.

experiment and to consider the fabrication of an HBAR optimized for our experiment.

2.5 Towards an Implementation into the Experiment

Up to this point, we have discussed how an HBAR works and simulated the electric field that it generates.
Additionally, real HBARs for our experiment that originated from a collaboration with Prof. Yiwen
Chu’s research group in Zurich were presented. In this section, we will discuss the qualitative aspects of
how an implementation in the HQO experiment could look like. For more details about the atom chip,
the reader is refered to Section 4.1 and Ref [62].

An idea for an implementation is shown in Fig. 2.25. The HBAR is attached to two holders which are
attached to the atom chip surface. The holders have two functions. First, the active acoustic region of the
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(a) (b)

Figure 2.24: Plots show the intensity profile of probe and control beam above the HBAR chip. (a) shows the probe
beam (780 nm) and (b) shows the control beam (480 nm). The beams are focused to a waist of 8 µm and 15 µm
with the waist position 35 µm above the HBAR. The beams are propagating in 𝑦-direction and the top of the HBAR
is placed at 𝑧 = 0 (The dome is not plotted as it is negligibly small in height). One sees no clipping at the chip
within two times the waist size.

HBAR is sorounded by vacuum which is necessary to have no losses into the chip. Second, the holders
are chosen of such a height that the laser beams do not clip at the edges of the atom chip. Fig. 2.26 shows
a cut through the probe beam profile above the atom chip. At a distance of about 400 µm above the chip,
there is no clipping of the beam at the chip edge. The control beam is not shows as the beam divergence
is smaller and therefore never the limiting factor.

The supercoducting trapping wire in Fig. 2.25 can trap the atoms above the HBAR dome. The exact
trapping position and relative distance to the dome can be controlled by the applied currents and external
magnetic fields. More details on that can be found in Ref [62]. In addition to the trapping wire, a
superconducting coplanar waveguide resonator is present on the chip. It is coupled capacitviely to the
microwave feed lines (more details also in Ref [62]). This resonator can be used to classically drive
the HBAR. This would provide strong classical atom–HBAR coupling and a practical first step before
single-phonon interactions. In this regime the atoms can also serve as probes of the resonator surface
(e.g., mapping adsorbate-induced stray fields). Here, care must be taken to stay in the undercoupled
regime such that the quality factor is still determined by the high intrinsic quality factor of the HBAR
and not through the external coupling [87].

One cruicial part, which is not shown in the sketch, is the required precise electric field compensation
at the position of the atoms via electrodes with externally applied electric fields. This is necessary to
compensate for any stray electric fields from e.g. adsorbates on the chip surface [88–91]. Here, more
time will be needed to specify the exact requirements on these compensation electrodes and to design
them accordingly.
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Figure 2.25: Sketch of a possible implementation of the HBAR into the HQO experiment. The HBAR is mounted
on two holders which are attached to the atom chip surface. The holders have two functions: First, they sorround
the active acoustic region of the HBAR with vacuum which is necessary to have no losses into the chip. Second,
they are chosen of such a height that the laser beams do not clip at the edges of the atom chip. The atoms can be
trapped above the dome of the HBAR via a superconducting trapping wire on the atom chip. A superconducting
coplanar waveguide resonator is capacitively coupled to microwave feed lines and can be used to drive the HBAR
and/or the atoms.

Figure 2.26: Cut through the probe beam profile above the atom chip (HBAR is not shown in this image, it would
sit on top of the atom chip). The beam is focused to a waist of 8 µm with the waist position ∼ 400 µm above the
atom chip. The beam is propagating in 𝑦-direction. One sees no clipping at the chip within two times the waist
size for a chip width of 11 mm (our current design [62]).
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CHAPTER 3

Interfacing Rydberg Atoms with an HBAR

In the previous chapter we had a quantitative look into the physics of high overtone bulk acoustic wave
resonators. We discussed how acoustic modes can be confined in the resonator, how piezoelectricity
works, and how we can use the piezoelectric effect to couple atoms to the acoustic field of the resonator.
Ultimately, the oscillating electric field of the HBAR was simulated. The electric field is essential to
calculate how well a Rydberg atom can couple to the resonator. In this chapter we will now look into the
calculation of the coupling strength between the two using the simulated electric field. After this, we
will look into one application of the coupling which is the cooling of one resonator mode close to the
quantum mechanical ground state using Rydberg atoms as a refrigerant. The cooling mechanism will be
explained and a simulation of the cooling process will be presented.

3.1 Coupling Rydberg Atoms to an HBAR Mode

Assume we have an atom excited to a Rydberg state, in the following called |𝑛𝑆⟩, that is coupled to a
higher lying Rydberg state |𝑛𝑃⟩ via the electric field of an HBAR mode. The two states form a two
level system with transition frequency 𝜔𝑆𝑃. The HBAR, as discussed in Section 2.1.3, can be treated
as a harmonic oscillator. If the atomic transition frequency 𝜔𝑆𝑃 is resonant with the frequency of the
HBAR mode 𝜔𝑚, we can describe the coupled system with the Jaynes-Cummings model in the following
form [92]:

𝐻 = ℏ𝜔𝑚𝑎̂
†
𝑎̂ + ℏ𝜔𝑚 |𝑛𝑃⟩ ⟨𝑛𝑃 | + ℏ

ΩHBAR
2

(
|𝑛𝑃⟩ ⟨𝑛𝑆 | 𝑎̂ + |𝑛𝑆⟩ ⟨𝑛𝑃 | 𝑎̂†

)
, (3.1)

where 𝑎̂ and 𝑎̂
† are the annihilation and creation operators for the oscillator mode, respectively, |𝑛𝑆⟩ and

|𝑛𝑃⟩ are the ground and excited states of the two-level system, 𝜔𝑚 is the frequency of the HBAR mode
and the Rydberg-Rydberg transition and ΩHBAR is the single-phonon Rabi frequency. The single-phonon
Rabi frequency is given by:

ΩHBAR =
⟨𝑛𝑃 |𝑒𝑝 · ®̂𝑑 |𝑛𝑆⟩𝐸0

ℏ
, (3.2)

where 𝑒𝑝 is the electric field polarization vector at the position of the atom, ®̂𝑑 is the dipole moment
operator, and 𝐸0 is the real amplitude of the electric field. Throughout this thesis we will work with
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Figure 3.1: Sketches of electric field shape for two different HBAR modes with external magnetic field and defined
coordinate system. The left shows the case for a fundamental Gaussian mode where the electric field points
orthogonal to the piezo surface. The right shows a higher order mode where the electric field points parallel to the
piezo surface. The red and blue ellipses indicate the strain profile inside the resonator.

ΩHBAR as the figure of merit of the coupling strength between the atom and the resonator mode. Note
that in the literature the coupling strength is often given as 𝑔 =

ΩHBAR
2 , which is half the single-phonon

Rabi frequency [80].
Fig. 3.1 shows the situation we consider for the calculation of ΩHBAR. The atoms will be trapped by a

magnetic trap above the piezo surface. The magnetic trapping results in a non-vanishing magnetic field
at the trap potential minimum (more details in ref [62]). We will use the field to define the quantization
axis of the atoms. We stick to the coordinate system from Fig. 3.1 as it is consistent with standard
notation in atomic physics. From Section 2.3.4 we know that there are two cases for the electric field, it
either points in the orthogonal direction to the piezo surface, which we will call ®𝐸⊥, or parallel to it,
called ®𝐸 ∥ . Using the circular basis, we can write both fields in the following form:

®𝐸⊥ = 𝐸
⊥
0 𝑒𝑦 =

𝐸
⊥
0√
2
(𝑒𝜎+ + 𝑒𝜎−) (3.3)

®𝐸 ∥ = 𝐸
∥
0 𝑒𝑧 = 𝐸

∥
0 𝑒𝜋 (3.4)

where 𝑒𝜋 and 𝑒𝜎± are the electric field polarization vectors in the circular basis. As a result, a parallel
pointing field couples to 𝜋 transitions, while a perpendicular field couples to both 𝜎

+ and 𝜎
− transitions.

In case the levels are split too far apart by the Zeeman shift, only coupling to either the 𝜎
+ or 𝜎−

transition is possible, which reduces the Rabi frequency by a factor
√

2. Under these assumptions, the
single-phonon Rabi frequencies reduce to:

Ω
⊥
HBAR =

𝑑𝜎±𝐸
⊥
0

ℏ
√

2
(3.5)

Ω
∥
HBAR =

𝑑𝜋𝐸
∥
0

ℏ
(3.6)

where 𝑑𝜎± and 𝑑𝜋 are the absolute values of the dipole matrix elements for the corresponding transitions.
In the first place there are no plans to work with higher order transversal modes of the HBAR, and the
fundamental mode only results in an electric field perpendicular to the piezo surface. Therefore, we only
consider Ω⊥

HBAR in the following sections.
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Figure 3.2: Dipole matrix elements for different 𝜎+
, 𝑛𝑆 ↔ 𝑛𝑃 transitions as a function of the transition frequency.

The dashed line has a slope of −2/3 and indicates a scaling of |𝑑 | ∝ 𝑓
−2/3. The red cross indicates the dipole

matrix element for the 85𝑆1/2 ↔ 85𝑃3/2 transition at 5.8 GHz. Matrix elements were calculated using the ARC
library [63].

3.1.1 Scaling of Coupling Strength with Transition Frequency

Using the results from Chapter 2, we can now calculate explicit values for ΩHBAR. Before calculating the
value of ΩHBAR for a specific transition, we first consider how ΩHBAR scales with the resonator frequency
𝜔𝑚. In Section 2.3.2 we derived the frequency dependence of the electric field amplitude. We found
that the electric field amplitude scales with the resonator frequency 𝜔𝑚 as 𝐸0 ∝ 1/√𝜔𝑚. However, we
are interested in the coupling strength which scales with the product of the electric field amplitude and
the corresponding transition dipole matrix element (see Eqs. (3.5) and (3.6)). Fig. 3.2 shows the dipole
matrix element of the 𝜎

+ transition as a function of the transition frequency. The dipole matrix element
scales as |𝑑 | ∝ 𝜔

−2/3, and therefore, the single-phonon Rabi frequency scales as:

ΩHBAR ∝ 𝐸0 · |𝑑 | ∝ 𝜔
−7/6
𝑚 . (3.7)

3.1.2 Coupling Strength for the 85𝑺1/2 ↔ 85𝑷3/2 Transition

In this Section, we will calculate concrete values for the coupling strength ΩHBAR for the
��85𝑆1/2

〉
↔��85𝑃3/2

〉
𝜎
+ transition. This transition has a frequency of 𝜔/2𝜋 ≈ 5.82 GHz and a dipole matrix element

of 𝑑𝜎+ ≈ 4 400 ea0 (calculated using the ARC library [63]).
The calculations are performed for different parameter combinations, specifically we vary the atom-

resonator distance, the substrate thickness and the piezo coupling constant. The results are shown
in Table 3.1. For the atom-resonator distance, we use two different distances, the originally planned
distance of 50 µm, and a shorter distance of 35 µm, which is theoretically achievable (see Section 2.4).
For the substrate thickness, we align our calculations with the samples produced by the ETH group as
discussed in Section 2.4. The group produces two different substrate thicknesses. Finally, we also use
two different values for the piezo coupling constant, the value 𝑒33 = 1.55 C m−2 and the very optimistic
case of 𝑒33 = 2.25 C m−2.
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Table 3.1: Single–phonon electric field amplitudes and resulting coupling strengths for the
��85𝑆1/2

〉
↔

��85𝑃3/2
〉
𝜎
+

transition at 𝑓𝑚 ≈ 5.82 GHz for different atom–resonator distances 𝑧, substrate thicknesses 𝐿, and piezoelectric
coefficients 𝑒33. 𝑤opt is the acoustic mode waist used (from Section 2.3.2). 𝐸0 is the simulated single–phonon field
amplitude at 𝑧. ΩHBAR is the single–phonon Rabi frequency; Ω(eff)

HBAR includes the 1/
√

2 reduction from Eq. (3.5).

𝑧 / µm 𝐿 / µm 𝑒33 / C m−2
𝑤opt / µm 𝐸0 / mV m−1

ΩHBAR/2𝜋 / kHz Ω
(eff)
HBAR/2𝜋 / kHz

35 160 1.55 23.74 0.897 50.4 35.6
35 160 2.25 23.74 1.303 73.1 51.7
50 160 1.55 32.29 0.434 24.3 17.2
50 160 2.25 32.29 0.629 35.3 25.0
35 420 1.55 23.74 0.554 31.1 22.0
35 420 2.25 23.74 0.804 45.1 31.9
50 420 1.55 32.29 0.268 15.0 10.6
50 420 2.25 32.29 0.388 21.8 15.4

We can define the cooperativity as a measure for how deep in the strong-coupling regime the system is
[92]

𝐶 =
Ω

2
HBAR
𝛾𝑅𝜅

, (3.8)

where 𝛾𝑅 is the decay rate of the Rydberg state and 𝜅 is the linewidth of the resonator mode. Assuming a
Rydberg decay rate of 𝛾𝑅 ∼ 2𝜋 · 1 kHz and a resonator linewidth of 𝜅 = 2𝜋 · 0.5 kHz (see Section 2.4),
we can calculate the cooperativity for the different scenarios in Table 3.1 and see that we are in the strong
coupling regime with 𝐶 > 1 for all cases. However, the values are calculated without taking thermal
population of the resonator mode into account, which we will discuss in the next Section.

3.2 Rydberg Atoms as a Refrigerant for Ground State Cooling of an
HBAR Mode

We have now established the coupling mechanism between the HBAR mode and a Rydberg atom. Using
the results for the electric field from Section 2.3.2, we quantified the expected coupling strength in
Section 3.1. Due to the small linewidths of the HBAR and the Rydberg states, we determined that
the coupled system is in the strong coupling regime. However, the experiment will happen at a finite
temperature of 4 K. As a result, the oscillator will be in a thermal state described by the mean phonon
number ⟨𝑛th⟩ [93], and not in the vacuum fock state:

⟨𝑛th⟩ =
1

𝑒
ℏ𝜔𝑚/𝑘𝐵𝑇 − 1

, (3.9)

where 𝜔𝑚 is the frequency of the resonator mode and 𝑇 is the temperature. At 5.8 GHz and 4 K this
would result in a mean occupation number of ⟨𝑛th⟩ ≈ 14. This thermal occupation prohibits coherent
atom–resonator dynamics unless the HBAR is first cooled close to its ground state. This would be
possible by going to even lower temperatures, e.g. to a few mK as can be reached in a dilution refrigerator
[6, 53]. However, a dilution refrigerator would make the experiment much more complicated, especially
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in the combination with trapped atoms and optical lasers as dilution refrigerators have signifcantly less
cooling power than a convetional 4 K cryostat [94, 95]. However, with the Rydberg atoms we already
have a tool at hand that we can use to cool the resonator mode. By coupling to the resonator, the atoms
can absorb excitations, and through a controlled dissipation channel, this energy can be removed from
the system before it returns to the resonator. In the following, it will be motivated how this can be
realized. In the following Sections, we will discuss how to simulate this cooling process and how one
could implement it experimentally.

3.2.1 Coupled Atom-Resonator System

Fig. 3.3 shows the complete system. It consists of the HBAR at finite temperature 𝑇 , where one mode is
coupled to ultracold Rydberg atoms, loaded above the chip and close to the resonator surface. The atoms
are excited to the Rydberg state by the red and blue laser using a two photon transition. Because of the
finite temperature, we can treat the HBAR mode of interest as coupled to a thermal bath at temperature
𝑇 . There is a heating Γℎ and a cooling rate Γ𝑐 associated with this bath [93]:

Γℎ = (⟨𝑛⟩ + 1)⟨𝑛th⟩𝜅 (3.10)
Γ𝑐 = −⟨𝑛⟩(⟨𝑛th⟩ + 1)𝜅 (3.11)

where 𝜅 =
𝜔𝑚
𝑄𝑚

is the linewidth of the resonator mode, 𝑄𝑚 is the quality factor of mode 𝑚, 𝜔𝑚 is the
frequency of mode 𝑚, and ⟨𝑛⟩ is the mean phonon number of the mode. The thermal bath will lead
to a steady state mean phonon number of ⟨𝑛th⟩ in the resonator mode if there is no other interaction
mechanism.

Now, the HBAR mode is coupled to the Rydberg atoms, and can therefore exchange energy with them.
The upper Rydberg state of the atoms is coupled to a decay channel which dissipates the energy once the
excitation via an acoustic phonon happened (depicted as Γdis in Fig. 3.3). This means going from the
strong coupling regime to the weak coupling regime on purpose to only allow for energy transfer out
of the resonator. After the dissipation happened, the atom can be excited back to the lower Rydberg
state. In this way, the atom can continuously absorb energy from the resonator and dissipate it into the
environment. The aim would be to achieve an energy dissipation via the atoms that is significantly faster
than the heating rate from the thermal bath to significantly reduce the phonon number in the HBAR
mode.

If we have 𝑁 atoms participating in the cooling process, and we assume that the dissipation rate does
not depend on the phonon number in the resonator, we can write the change of the mean phonon number
as [93]:

𝑑⟨𝑛⟩
𝑑𝑡

= Γℎ + Γ𝑐 − 𝑁 · Γdis · ⟨𝑛⟩ , (3.12)

where the equilibrium phonon number ⟨𝑛⟩eq is given by setting 𝑑⟨𝑛⟩
𝑑𝑡

= 0:

⟨𝑛⟩eq =
⟨𝑛th⟩𝜅

𝜅 + 𝑁 · Γdis
. (3.13)

Under the assumption that the resonator linewidth is small compared to 𝑁 · Γdis, Eq. (3.13) can be written
as:

⟨𝑛⟩eq ≈
⟨𝑛th⟩𝜅
𝑁 · Γdis

. (3.14)
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Figure 3.3: A sketch of the coupled atom–resonator system. The HBAR mode is coupled to a thermal bath at
temperature 𝑇 which leads to a heating and cooling rate Γℎ and Γ𝑐, respectively. The Rydberg atoms are coupled
to the resonator mode via the piezoelectric effect and can dissipate energy via a controlled dissipation channel
with rate Γdis. The two lasers represent excitations lasers to excite atoms to the Rydberg state via a two photon
transition.

This means to bring the HBAR mode close to its ground state, we require

𝑁Γdis > ⟨𝑛th⟩𝜅 , (3.15)

which can be achieved by either increasing the number of atoms 𝑁 and/or the dissipation rate Γdis.
Eq. (3.13) provides useful intuition and yields a simple condition for near-groundstate cooling.

However, it relies on the simplifying assumption that the dissipation rate Γdis is independent of the
resonator state. To capture the full dynamics and determine Γdis for our system, we next turn to a
Lindblad master equation description of the coupled atom–resonator system. We will return to Eq. (3.13)
later to estimate the scaling of ⟨𝑛⟩eq with atom number and compare it to the simulation results.

3.2.2 Cooling with Single Rydberg Atoms

In order to simulate the system shown in Fig. 3.3, we first consider the simplest case of just a single atom.
This could for example be achieved by trapping a single atom inside an optical tweezer above the HBAR.
Fig. 3.4 shows an implementation of a continuous-wave based cooling scheme. The ground state |𝑔⟩ of
the atom is coupled to a lower Rydberg state |𝑛𝑆⟩ with effective Rabi frequency Ω and detuning Δ. The
lower Rydberg state is coupled to an upper Rydberg state |𝑛𝑃⟩ via the interaction with the HBAR mode
with strength ΩHBAR. To introduce the required dissipation channel, the upper Rydberg state is coupled
to an intermediate state |𝑒⟩ with effective Rabi frequency Ω

′ and detuning Δ
′. The intermediate state

decays fast with rate 𝛾𝑒 to the ground state |𝑔⟩. The Rydberg states themselves are characterized by their
natural linewidths 𝛾𝑛𝑆 and 𝛾𝑛𝑃 , respectively, which are assumed to be much smaller than 𝛾𝑒. The HBAR
is coupled to the thermal bath at temperature 𝑇 which leads to the heating and cooling rates discussed in
Eqs. (3.10) and (3.11). This cooling process has been theoretically studied in Ref [96], where the authors
simulate cooling of a superconducting microwave cavity using Caesium Rydberg atoms. Mathematically,
this system is equivalent to ours (the mathematical description of this system will not be covered here,
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Figure 3.4: The atomic level scheme for the cooling process with single atoms. The ground state |𝑔⟩ is coupled
to the lower Rydberg state |𝑛𝑆⟩ with effective Rabi frequency Ω and detuning Δ. The upper Rydberg state |𝑛𝑃⟩
is coupled to the intermediate state |𝑒⟩ with effective Rabi frequency Ω

′ and detuning Δ
′. The lower and upper

Rydberg states are coupled to the HBAR mode with strength ΩHBAR. The intermediate state |𝑒⟩ decays with rate
𝛾𝑒 to the ground state. The HBAR is coupled to the thermal bath at temperature 𝑇 which leads to the heating and
cooling rates discussed in Eqs. (3.10) and (3.11).

please refer to Ref [96] or to Section 3.3.1 where we will discuss the mathematical description for the
ensemble case, the single atom case can be inferred from that). Here, we will discuss some results that
are of interest for us. The main motivation is to understand why it is beneficial to have an ensemble of
atoms instead of single atoms, where we can make use of the Rydberg blockade effect.

Fig. 3.5(b) shows the phonon number distribution in the resonator mode, which is a reproduced result
from Ref [96]. The distribution is shown before the cooling process (thermal state with ⟨𝑛th⟩ = 5.1)
and after the cooling process, in the thermal equilibrium. Interestingly, the final state in the resonator is
not a thermal state anymore, as the deviation from a thermal distribution with the same mean phonon
number shows. The final state has an increased population of the zero phonon fock state and a decreased
population of the next higher fock states. For the larger phonon numbers (𝑛 > 7) the population is
increased again compared to the thermal state. As explained in Ref [96], this is a result of a larger
splitting for higher lying fock states which shifts these out of resonance in the cooling process. This
is the reason why the dissipation rate Γdis in Eq. (3.12) is not independent of the phonon number in
the resonator. We will come back to this in the outlook (Section 3.3.2) where we discuss possible
improvements of the resonator cooling process.

The second result of interest is shown in Fig. 3.5(a). It shows the time evolution of the expectation
values of the atomic state population as a function of time for the same simulation parameters as in
Fig. 3.5(b). We can see that after the thermal equilibrium is reached, we still have a significant fraction of
the population in |𝑔⟩ (∼ 40 %) and in |𝑒⟩ (∼ 15 %). The fraction in these two states does not participate
in the cooling process, which reduces the cooling efficiency.

In order to reduce the population in the states that do not contribute to the cooling, we first consider
how to reduce the population fraction in |𝑒⟩. This state is populated via the dissipation channel. The
population in this state can be reduced by increasing the decay rate 𝛾𝑒. However, one is experimentally
limited by the achievable decay rate. Assuming the fastest decay rate in Rb-87 of the 5𝑃-state of ∼ 6 MHz
[97] for the state |𝑒⟩ one could maximally achieve an effective decay rate of the upper Rydberg state
of 𝛾𝑒/2/2𝜋 ∼ 3 MHz [80]. In case the coupling strength between the atoms in the resonator is on the
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Figure 3.5: (a) Lower plot is a reproduction of Fig. 4.b) from Ref [96]. It shows the mean phonon number
of the resonator as a function of time. Upper plot shows the population of the atomic states as a function of
time for the same simulation parameters. (b) A reproduction of Fig 4.b) from Ref [96]. It shows the phonon
number distribution in the resonator mode before the cooling process (thermal state with ⟨𝑛th⟩ = 5.1) and after the
cooling process in the thermal equilibrium. Simulation parameters are the same as in the reference. The thermal
distribution with the same mean phonon number as the final state is shown for comparison. The lower plot shows
the deviation of the final state from the thermal distribution of same mean.

same order of magnitude or larger than 𝛾𝑒/2, the cooling efficiency is fundamentally limited by the
possible effective decay rate of the upper Rydberg state (also mentioned in Ref [96]). To circumvent this
bottleneck, one can make all other timescales in the system smaller by reducing the coupling strength
between the atoms and the resonator and also the decay rate of the resonator itself (meaning higher
quality factors). In this way, the smaller coupling strength is compensated by an increase of the resonator
lifetime, but one is not limited by the effective decay rate of the upper Rydberg state anymore. This is the
case for our system where we expect to have smaller coupling strengths on the order of ≥ 10 kHz (see
Section 3.1.2) compared to ≥ 1 MHz in ref [96] but also two orders of magnitude better quality factors
of 𝑄 ∼ 107 (see Section 2.5) compared to the values used in Ref [96] where they assumed 𝑄 = 105 for
calculating the time evolution shown in Fig. 3.5(a).

Population in |𝑔⟩ is also a problem in the proposed system of Ref [96]. In our system, however,
population in |𝑔⟩ does not pose a big problem. This difference is caused by a very important difference
between the system proposed in Ref [96] and our system. Ref [96] considers a single atom coupled to the
resonator, while we will have an ensemble of atoms (a cloud) coupled to the resonator. We will discuss
why this enables us to reduce the fraction of ground state population for the cooling process and how we
can model this cooling process in the next Section.
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3.2.3 Cooling with Rydberg Superatoms

In the case of an ensemble of atoms, the interaction between Rydberg atoms must be considered. Due to
the large polarizability of Rydberg states, two Rydberg atoms excited to an 𝑆-state will interact strongly
via van-der-Waals interactions [35]. If we have two atoms excited to a Rydberg state, there will be an
energy shift of the doubly excited state due to this interaction that depends on the separation of the two
atoms which scales with 1/𝑟6 [98] where 𝑟 is the distance between them. This leads to the so called
Rydberg blockade effect. There is a radius related to the distance where the interaction-induced energy
shift of the pair state exceeds the linewidth of the excitation laser, called the blockade radius 𝑟𝑏. If 𝑁𝑎
atoms are inside the volume defined by the blockade radius, only one of 𝑁𝑎 atoms can be excited to a
Rydberg state. A typical blockade radius is on the order of 10 µm [40].

For now, we will assume to have a cloud of atoms, that can be adressed by the exciation lasers, with
a volume that is smaller than the blockade volume. As in Section 3.2.2, we have a single Rydberg
atom available for the cooling process. But there is one important distinction: The 𝑁𝑎 atoms inside
the blockade volume will form a collective state [36], a so called superatom. There will be a collective
ground state

|𝐺⟩ =
���𝑔1, 𝑔2, ..., 𝑔𝑁𝑎

〉
and a collective bright state

|𝑊⟩ = 1√︁
𝑁𝑎

𝑁𝑎∑︁
𝑖=1

���𝑔1, 𝑔2, ..., 𝑟𝑖 , ..., 𝑔𝑁𝑎

〉
where

��𝑟𝑖〉 is the Rydberg state of atom 𝑖. One feature of this collective state is the enhanced coupling
between the collective ground state and the collective bright state, which scales as

√︁
𝑁𝑎Ω [25, 39], where

Ω is the single atom Rabi frequency. However, there are also 𝑁𝑎 − 1 other states |𝐷⟩1 , ..., |𝐷⟩𝑁𝑎−1
that are orthogonal to the bright state. They do not couple to the ground state via the driving field [25].
However, there are dephasing mechanism, such as atomic motion [99], that can lead to a dephasing of
the bright state into the dark states. In case 𝑁𝑎 ≫ 1, the probability to rephase from a dark state back
into the bright state is very small [100]. This allows to combine all 𝑁𝑎 − 1 dark states into a single dark
state |𝐷⟩ where we now have a single dephasing rate 𝛾𝐷 from the bright state |𝑊⟩ into the dark state
|𝐷⟩. This 2+1 level system is illustrated in Fig. 3.6.

Most experiments put a lot of effort into keeping the dephasing into the dark states low, as they are a
loss channel for the coherent dynamics between the ground state and the bright state which leads to a fast
dephasing of the collective Rabi oscillations [28, 101]. However, in our case, this dephasing into the
dark states is beneficial. The dark states are still Rydberg states and can therefore couple to the resonator
mode. However, they are not coupled to the atomic ground state via the driving field anymore. In the
past, this feature was used to realize a single photon absorber [26, 100]. Here, the idea is that if a single
photon excites the collective bright state, it will quickly dephase into the dark states. Since the dark
states do not couple to the ground state anymore, they cannot emit the photon back.

This means that atoms can be transferred fast into a long-lived Rydberg state that is decoupled from
the driving field. This is exactly what we want for the cooling process, as it allows reducing the fraction
of atoms in the ground state and therefore increases the number of atoms that can participate in the
cooling process. By tuning the ratio between the Rabi frequency Ω of the driving field and the dephasing
rate 𝛾𝐷 , one can control the dynamics of the population transfer from the ground state to the dark states
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Figure 3.6: Left side shows the states of the collective system. The ground state |𝐺⟩ is coupled to the bright state
via a driving field with Rabi frequency Ω. The 𝑁𝑎 − 1 dark states are not coupled to ground state via the driving
field. There are dephasing rates between the bright state and any dark state. The dephasing into the dark states can
be combined into a single dephasing rate 𝛾𝐷 from the bright state into a representative dark state |𝐷⟩ and the
dephasing back into the bright state can be neglected for 𝑁𝑎 ≫ 1. The right side shows the simplified 2+1 level
system where all dark states are combined into a single dark state |𝐷⟩.

[100]. Fig. 3.7 shows the time evolution of the driven 2+1 level system for three different cases (here,
any decays to the ground state are neglected which is justified because the drive and the dephasing
can be made much larger than the decay [25]). The blue line represent the underdamped case where
Rabi oscillations between |𝐺⟩ and |𝑊⟩ are still visible. The green line shows the overdamped case
where the population is transferred to the dark states without oscillations. The orange line shows the
critically damped case where the population is transferred to the dark states in the shortest time. As a
reference, we assume an experimentally determined dephasing rate of 𝛾𝐷/2𝜋 = 1.4 MHz [25] which
can be increased by e.g. increasing the temperature of the atoms to increase atomic motion. Comparing
this to the coupling to the HBAR we find

𝛾𝐷 ≫ ΩHBAR .

This already suggests that by making use of the Rydberg blockade effect which gives rise to collective
effects, we will be able to significantly increase the number of atoms that can participate in the cooling
process as the pumping process from |𝐺⟩ into the Rydberg state happens on fast time scales compared to
the atom-resonator interaction. In the next Section, we will simulate the cooling process using the 2+1
level system described here.

3.3 Simulation of the Cooling Process

In the last Section, we motivated why it is beneficial to use an ensemble of atoms instead of single atoms
for the cooling process. In the following, we will discuss how to simulate this cooling process and show
results for experimentally realistic parameters.

54



Chapter 3 Interfacing Rydberg Atoms with an HBAR

0 1 2 3 4 5 6
Time / µs

0.0

0.2

0.4

0.6

0.8

1.0

1
P G

= 0.2 coll
= 1.0 coll
= 5.0 coll

Figure 3.7: Rydberg population dynamics are shown for three different ratios of dephasing rate 𝛾𝐷 and collective
Rabi frequency

√︁
𝑁𝑎Ω. The critically damped case (orange) shows the fastest transfer of population from the

ground state into the dark state. The overdamped case (green) shows a slower transfer without oscillations.
The underdamped case (blue) shows Rabi oscillations between the ground state and the bright state before the
population is transferred to the dark state. Simulation parameters:

√︁
𝑁𝑎Ω/2𝜋 = 1.4 MHz.

3.3.1 Superatom HBAR Cooling Scheme

We will now couple a Rydberg superatom to the HBAR mode and simulate the cooling process. For now,
we will stick to the case that our ensemble of atoms, that is addressable by our lasers, is smaller than the
blockade volume which only allows for a single Rydberg excitation in the ensemble. In Section 3.3.2 we
will discuss how the cooling scheme performs in case of multiple Rydberg exciations.

System Description

The system we now consider is shown in Fig. 3.8. Additionally to the shown drives and decays, each of
the three Rydberg states has its natural linewidth 𝛾𝑛𝑆 and 𝛾𝑛𝑃 . Before we discuss the Hamiltonian of the
system, we will point out the relevant properties of the collective states. As stated in the last Section,
there is a single collective bright state |𝑊⟩ and 𝑁𝑎 − 1 collective dark states. We combine all 𝑁𝑎 − 1
dark states into a single representative dark state |𝐷⟩ and assume that the bright state dephases into
this state with rate 𝛾𝐷 without a dephasing mechanism back to |𝑊⟩. For the coupling to the resonator
mode, it does not matter in which exact dark state we are because the resonator only couples to the single
Rydberg excitation that is present in the ensemble and not to the collective state. The single Rydberg
excitation is present in all states, also all dark states.

Having established that we can treat our ensemble of atoms as a single superatom, we can now write
down the Hamiltonian of the complete system. It consists of the Hamiltonian of the collective atomic
system, the Hamiltonian of the resonator mode, and the interaction between the two:

𝐻tot = 𝐻atom ⊗ Iosc + Iatom ⊗ 𝐻osc + 𝐻int , (3.16)

where 𝐻atom is the Hamiltonian of the collective atomic system, 𝐻osc is the Hamiltonian of the resonator
mode, and 𝐻int describes the interaction between the two. Iatom and Iosc are identity operators in the
respective subspaces. The collective atomic system consists of five states: the collective ground state
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Figure 3.8: The atomic level scheme for the cooling process with an ensemble of atoms. The collective ground
state |𝐺⟩ is coupled to a collective bright Rydberg state |𝑊⟩ with collective Rabi frequency Ω and detuning Δ.
There are 𝑁𝑎 − 1 collective dark states that are degenerate with the bright state, which are combined into a single
dark state |𝐷⟩. The bright state dephases into |𝐷⟩ with rate 𝛾𝐷 . The upper Rydberg state is now a collective state
as well, called |𝑃⟩. It is coupled to an intermediate state |𝐸⟩ with effective Rabi frequency Ω

′ and detuning Δ
′.

The intermediate state decays with rate 𝛾𝐸 to the collective ground state. The lower and upper collective Rydberg
states are coupled to the HBAR mode with strength ΩHBAR. Natural decay rates of the Rydberg states are not
shown.

|𝐺⟩, a collective bright Rydberg state |𝑊⟩, a collective dark Rydberg state |𝐷⟩ (representative for all
𝑁𝑎 − 1 dark states), an upper Rydberg state |𝑃⟩, and an intermediate state |𝐸⟩ that provides a dissipation
channel. There are two classical drives present in the atomic system (for the simulation, we treat two
photon transitions as an effective one photon transtion with an associated effective driving strength):
One between the ground state and the bright Rydberg state with Rabi frequency Ω and laser frequency 𝜔,
and one between the upper Rydberg state and the intermediate state with Rabi frequency Ω

′ and laser
frequency 𝜔

′. The bright and dark Rydberg states are assumed to be degenerate. Note that we set ℏ = 1
for the rest of this Section.

To work with this Hamiltonian, we transform into an appropriate rotating frame for the atomic system
and apply the rotating wave approximation (RWA). We end up with the following time-independent
Hamiltonian (see Section A.2 for a derivation):

𝐻 = 𝜔𝑚𝑎̂
†
𝑎̂ HBAR mode

− Δ |𝑊⟩ ⟨𝑊 | − Δ |𝐷⟩ ⟨𝐷 | lower Rydberg state (bright and dark)
− (Δ − 𝜔𝑚) |𝑃⟩ ⟨𝑃 | upper Rydberg state
− (Δ − Δ

′ − 𝜔𝑚) |𝐸⟩ ⟨𝐸 | intermediate state for energy dissipation

+ Ω

2
( |𝑊⟩ ⟨𝐺 | + |𝐺⟩ ⟨𝑊 |) Rabi drive: ground ↔ Rydberg

+ Ω
′

2
( |𝐸⟩ ⟨𝑃 | + |𝑃⟩ ⟨𝐸 |) Rabi drive: |𝑃⟩ ↔ |𝐸⟩ for energy dissipation

+ ΩHBAR
2

(
|𝑃⟩ (⟨𝐷 | + ⟨𝑊 |) ⊗ 𝑎̂ + (|𝐷⟩ + |𝑊⟩) ⟨𝑃 | ⊗ 𝑎̂

†
)

coupling to HBAR mode (3.17)

where Δ = 𝜔 − (𝜔𝑊 − 𝜔𝐺) and Δ
′
= 𝜔

′ − (𝜔𝑃 − 𝜔𝐸) are the detunings of the two-photon transitions
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from the respective atomic transitions, and 𝜔Ryd = 𝜔𝑃 − 𝜔𝑊 = 𝜔𝑚 is the Rydberg-Rydberg transition
frequency which is set to be resonant with the resonator mode frequency. The operators 𝑎̂ and 𝑎̂

† are the
annihilation and creation operators for the resonator mode, respectively, and ΩHBAR is the single-phonon
Rabi frequency that characterizes the coupling strength between the upper Rydberg state and the dark
Rydberg state via the resonator mode (see Section 3.1).

On top of the coherent dynamics described by the Hamiltonian, there are several incoherent processes
present in the system. As discussed, the bright state |𝑊⟩ dephases into the dark state |𝐷⟩ with a rate 𝛾𝐷 .
All three Rydberg states have a natural decay rate 𝛾𝑛𝑆 (for |𝑊⟩ and |𝐷⟩) and 𝛾𝑛𝑃 (for |𝑃⟩), respectively.
In addition, the bright state |𝑊⟩ has an enhanced spontaneous emission rate due to the driving field [25]
into the driving field mode. Since we do not care about the mode of the emitted photon, we can combine
the natural decay and the enhanced decay into a single decay rate called 𝛾𝑊 . The intermediate state |𝐸⟩
decays with rate 𝛾𝐸 to the collective ground state |𝐺⟩. The oscillator is coupled to the thermal bath at
temperature 𝑇 which leads to the heating and cooling rates discussed in Eqs. (3.10) and (3.11). From
this, the following collapse operators can be constructed:

𝐿𝛾𝐷
=
√
𝛾𝐷 |𝐷⟩ ⟨𝑊 | dephasing: |𝑊⟩ → |𝐷⟩

𝐿𝛾𝑛𝑆
=
√
𝛾𝑛𝑆

√
𝛾𝑛𝑆 |𝐺⟩ ⟨𝐷 | decay: |𝐷⟩ → |𝐺⟩

𝐿𝛾𝑊
=
√
𝛾𝑊 |𝐺⟩ ⟨𝑊 | decay: |𝑊⟩ → |𝐺⟩

𝐿𝛾𝑛𝑃
=
√
𝛾𝑛𝑃 |𝐺⟩ ⟨𝑃 | decay: |𝑃⟩ → |𝐺⟩

𝐿𝛾𝐸
=
√
𝛾𝐸 |𝐺⟩ ⟨𝐸 | decay: |𝐸⟩ → |𝐺⟩

𝐿Γ𝑐
=

√︃
𝜅
(
⟨𝑛𝑡ℎ⟩ + 1

)
𝑎̂ cooling: |𝑛⟩ → |𝑛 − 1⟩ in HBAR mode

𝐿Γℎ
=

√︁
𝜅⟨𝑛𝑡ℎ⟩𝑎̂

† heating: |𝑛⟩ → |𝑛 + 1⟩ in HBAR mode (3.18)

With this, we can write down the master equation of the system in Lindblad form (we use the notation
from Ref [102]):

¤𝜌(𝑡) = −𝑖[𝐻, 𝜌(𝑡)] +
∑︁
𝑘

1
2

(
2𝐿𝑘𝜌(𝑡)𝐿

†
𝑘
− {𝐿†

𝑘
𝐿𝑘 , 𝜌(𝑡)}

)
, (3.19)

where 𝜌(𝑡) is the density matrix of the system, 𝐻 is the Hamiltonian from Eq. (3.17), and 𝐿𝑘 are the
collapse operators that describe the incoherent processes and are defined above.

This system can be numerically solved with the Quantum Toolbox in Python (QuTiP) [102] to obtain
the time evolution of the expectation values and the steady state solution. For the simulation, the
parameters from Table Table 3.2 are fixed. The decay rates of the Rydberg states are calculated with
the ARC library [63]. For the decay rate of the |𝐸⟩ state, we use the rate of the 5𝑃 state of Rb-87 [97].
The coupling strength ΩHBAR/2𝜋 is set to 20 kHz, which was obtained in Section 3.1.2 for a substrate
thickness of 420 µm and an atom-resonator distance of 35 µm. For the dephasing rate into the dark states,
experimental values from Ref [25] were used. The drive Ω was chossen according to Section 3.2.3 to
get the fastest population transfer into the Rydberg state. The enhanced decay rate of the bright state |𝑊⟩
can be controlled by the number of atoms and the strength of the driving field [25]. For now, a value of
100 kHz is used.
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Table 3.2: Fixed simulation parameters for the 5-Level Superatom-Resonator Cooling Simulation from Section 3.3.1

Parameter Value Description
𝛾𝐷/2𝜋 1.4 MHz Bright-to-dark dephasing rate
𝛾𝐸/2𝜋 6 MHz Decay rate of intermediate state |𝐸⟩
𝛾nS/2𝜋 1.4 kHz Natural decay rate of lower Rydberg state |𝑛𝑆⟩
𝛾W/2𝜋 100 kHz Enhanced decay rate of bright state |𝑊⟩
𝛾nP/2𝜋 0.7 kHz Natural decay rate of upper Rydberg state |𝑛𝑃⟩
𝜅/2𝜋 0.5 kHz Linewidth of the HBAR mode
𝜔𝑚/2𝜋 5.8 GHz Frequency of the HBAR mode (and the atomic transition)
Ω/2𝜋 1.4 MHz Collective Drive Rabi frequency |𝐺⟩ ↔ |𝑊⟩
Δ/2𝜋 0 MHz Detuning of the ground-to-Rydberg drive
𝑇 4 K Bath temperature

Results

With the simulation, it is possible to determine the performance of the cooling scheme and optimize the
dissipation channel parameters. Here, we can tune the drive Ω′ between |𝐸⟩ and |𝑃⟩ and the detuning Δ

′

to optimize the effective decay rate of the upper Rydberg state. Fig. 3.9 shows the mean phonon number
in the HBAR in the steady state in dependence of these two parameters. We can see that there is an
optimum for the drive and detuning where the mean phonon number is minimized at

Ω
′/2𝜋 = 0.56 MHz

Δ
′/2𝜋 = 0 MHz . (3.20)

The result that a detuning of zero yields the best results agrees with Ref [96]. One can see a steep increase
of the final mean phonon number when reducing Ω

′ and a slower increase when increasing Ω
′. This can

be explained by the fact that for small Ω′, energy can not be extracted before it is transferred back to the
resonator which means we start to enter the strong coupling regime between the atom and the resonator
which we on purpose want to avoid for the cooling. For large Ω

′, the upper Rydberg state linewidth is
broadened too much to efficiently extract energy from the resonator. Because of the broad linewidth of
|𝐸⟩, the mean phonon number is not very sensitive to the exact value of Δ′ compared to the drive Ω′.

Using the engineered dissipation channel, we can now look at the time evolution of the system.
Fig. 3.10(a) shows the time evolution of the mean phonon number in the HBAR mode and the expectation
values of the population of the atomic states. We can see that the mean phonon number decreases from
the initial thermal value of ⟨𝑛⟩ ≈ 14 to a final value of

⟨𝑛⟩ ≈ 1.78 .

The population of the atomic states shows that we were able to completely depopulte |𝐸⟩ (bellow 0.1 %
in the steady state) and significantly reduce the population in |𝐺⟩ to about 1 % in the steady state.
Furthermore, after short initial dynamics, there is no significant population in the bright state |𝑊⟩ left.
The majority of the population is now in either |𝐷⟩ or |𝑃⟩. About 87 % of the atomic population is in
the dark state |𝐷⟩ which acts as the cooling reservoir. This is a significant enhancement compared to the
single atom case shown in Fig. 3.5(a) where the population in the lower Rydberg state is only about 40 %.
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Figure 3.9: A heatmap of the final mean phonon number in dependence of the driveΩ′ and detuningΔ′, that engineer
the dissipation channel, is shown. An optimum can be observed at Ω′/2𝜋 = 0.56 MHz and Δ

′/2𝜋 = 0 MHz where
the mean phonon number is minimized at ⟨𝑛⟩ ≈ 1.78 (marked by a red cross). Simulation parameters are the same
as in Table 3.2.

As a results, we can conclude that cooling with an ensemble of atoms is significantly more efficient than
cooling with a single atom, although we can in both cases have only a single Rydberg atom excited at a
time.

Two points remain of interest. We would like to know how the final state resonator population
depends on the number of superatoms that take part in the cooling process. So far, we only simulated
the cooling scheme performance for a single superatom. Furtheremore, the described observation of
reduced population in |𝑊⟩ and |𝐸⟩ suggests to conceptionally simplify the system which would also
allow for simulation of more atoms. We will disucss both points in the next Sections.

3.3.2 Simplified Superatom HBAR Cooling Scheme

From the discussion, it becomes clear that we can conceptually simplify this system which will allow for
easier interpretation and simulation of multiple superatoms coupled to the HBAR. The simplified system
is shown in Fig. 3.11. The five level atomic system is now reduced to a three level system. We have a
collective ground state |𝐺⟩, a collective Rydberg state |𝑆⟩ (representative for the dark state |𝐷⟩), and
an upper Rydberg state |𝑃⟩. The irreversible transfer from the ground state to the dark states via the
superatom dephasing is now modeled with a pump rate 𝛾pump that pumps population from |𝐺⟩ to |𝑆⟩.
The two Rydberg states are still coupled via the interaction with the HBAR mode. The upper Rydberg
state can decay via a dissipation channel to the ground state with a decay rate 𝛾𝑃 that can be engineered.
The natural decay rates of the Rydberg states are still included. We now assume to have 𝑁 superatoms
coupled to the same HBAR mode. For simplicity, we will assume the same coupling strength between
the atom and the HBAR for all 𝑁 atoms. Note that this 𝑁 now specifies the number of superatoms and is
different from 𝑁𝑎 from the previous Section which was the number of atoms inside a single superatom.

The Hamiltonian of this simplified system with 𝑁 superatoms is given by the following expression,
which is just 𝑁 two-level systems coupled to a harmonic oscillator:

𝐻 = 𝜔𝑚𝑎̂
†
𝑎̂ +

𝑁∑︁
𝑖

𝜔𝑚 |𝑃⟩𝑖 ⟨𝑃 |𝑖 +
𝑁∑︁
𝑖

ΩHBAR
2

(
|𝑃⟩𝑖 ⟨𝑆 |𝑖 ⊗ 𝑎̂ + |𝑆⟩𝑖 ⟨𝑃 |𝑖 ⊗ 𝑎̂

†
)
. (3.21)
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Figure 3.10: (a) shows the time evolution of expectation values of the atomic state population for the 5-level
superatom system (upper plot). The lower plot shows the time evolution of the mean phonon number in the HBAR
mode for the same simulation parameters. The mean phonon number decreases to a final value of ⟨𝑛⟩ ≈ 1.78. As
expected from the discussion in Section 3.2.3, the ground state population is significantly reduced compared to
the single atom case in Fig. 3.5(a) as well as the population of the intermediate state |𝐸⟩. Because of the fast
dephasing into the dark state |𝐷⟩, population in the bright state |𝑊⟩ is negligible after short initial dynamics. The
majority of the population is now in either |𝐷⟩ or |𝑃⟩. (b) shows the time evolution of expectation values of the
atomic state population for the simplified 3-level superatom system (upper plot) from Section 3.3.2. The lower
plot shows the time evolution of the mean phonon number in the HBAR mode for the same simulation parameters.

The coupling of the resonator to the bright state is neglected as the population in this state is negligible (as
discussed in Section 3.3.1). The collapse operators of this system are given by the following expressions.
Here, collapse operators related to the atomic states apply for each of the 𝑁 superatoms:

𝐿𝛾pump
=

√︁
𝛾pump |𝑆⟩ ⟨𝐺 | pump: |𝐺⟩ → |𝑆⟩

𝐿𝛾𝑛𝑆
=
√
𝛾𝑛𝑆 |𝐺⟩ ⟨𝑆 | decay: |𝑆⟩ → |𝐺⟩

𝐿𝛾𝑛𝑃
=
√
𝛾𝑛𝑃 |𝐺⟩ ⟨𝑃 | decay: |𝑃⟩ → |𝐺⟩

𝐿𝛾𝑃
=
√
𝛾𝑃 |𝐺⟩ ⟨𝑃 | engineered decay: |𝑃⟩ → |𝐺⟩

𝐿Γ𝑐
=

√︃
𝜅
(
⟨𝑛𝑡ℎ⟩ + 1

)
𝑎̂ cooling: |𝑛⟩ → |𝑛 − 1⟩ in HBAR mode

𝐿Γℎ
=

√︁
𝜅⟨𝑛𝑡ℎ⟩𝑎̂

† heating: |𝑛⟩ → |𝑛 + 1⟩ in HBAR mode (3.22)

The master equation of this system can be written down analogously to Eq. (3.19) and simulated using
QuTiP. Apart from the engineered decay rate 𝛾𝑃 and the pump rate 𝛾pump, all other parameters are the
same as in Table 3.2.
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Figure 3.11: Simplified 3-level system for the superatom-HBAR cooling scheme. The collective ground state |𝐺⟩
is pumped with rate 𝛾pump into the collective Rydberg state |𝑆⟩. The upper Rydberg state |𝑃⟩ can decay with an
engineered decay rate 𝛾𝑃 to the ground state. The two Rydberg states are coupled via the interaction with the
HBAR mode with coupling strength ΩHBAR. The natural decay rates of the Rydberg states 𝛾𝑛𝑆 and 𝛾𝑛𝑃 are also
included but not shown in the level scheme.

Results

For the moment, we assume a pump rate of 𝛾pump/2𝜋 = 1 MHz. First, we look at the time evolution of
the atomic system and the resonator. Fig. 3.10(b) shows the time evolution of the expectation values of
the atomic state population and the mean phonon number in the HBAR mode for a single superatom,
using the optimized engineered decay rate of 𝛾𝑃 , which will be discussed later. We can compare this to
Fig. 3.10(a) and indeed find the same dynamics as for the more complex 5-level atomic system. The
mean phonon number decreases from the initial thermal value of ⟨𝑛⟩ ≈ 14 to a final value of ⟨𝑛⟩ ≈ 1.74.

Having checked that we can reproduce the dynamics and cooling performance from Section 3.3.1, we
can now look at the dependence of the system parameters that we can tune. As in the last section, we
will first look at the dependence of the final mean phonon number on the engineered decay rate 𝛾𝑃 of the
upper Rydberg state. Fig. 3.12(a) shows the mean phonon number in the HBAR mode in the steady state
in dependence of 𝛾𝑃 and the number of superatoms 𝑁 . Similarly to Fig. 3.9, there is an optimum for
𝛾𝑃 where the mean phonon number is minimized. Reducing the decay rate below the optimum also
leads to a steep increase of the phonon number because the energy can not be extracted fast enough
from the resonator before it is transferred back. Increasing the rate also increases the phonon number
because of broadening of the upper Rydberg state, but less steep. Furthermore, increasing the number of
superatoms shifts the position of the optimal decay rate to smaller values and decreases the minimum
mean phonon number. For 𝑁 = 1, the optimal decay rate is 𝛾𝑃/2𝜋 = 54 kHz with a minimum mean
phonon number of ⟨𝑛⟩ ≈ 1.74. For 𝑁 = 3, the optimal decay rate is ∼ 40 kHz with a minimum mean
phonon number of ⟨𝑛⟩ ≈ 0.5. This can be explained by the dependence of the coupling strength between
atom and resonator on the phonon number. The Rabi frequency is given by

ΩHBAR,𝑛 =
√
𝑛 + 1ΩHBAR . (3.23)

Here, ΩHBAR is the single-phonon Rabi frequency, 𝑛 is the phonon number in the resonator, and ΩHBAR,𝑛

61



Chapter 3 Interfacing Rydberg Atoms with an HBAR

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Enhanced decay rate P / MHz

2

4

6

n

N=1
N=2
N=3

(a)

20 40 60 80
HBAR / kHz

20

40

60

80

100

120

140

P 
/ k

H
z

100

101

n

(b)

Figure 3.12: (a) shows the mean phonon number ⟨𝑛⟩ in the HBAR mode in the steady state in dependence of the
engineered decay rate 𝛾𝑃 of the upper Rydberg state for different numbers of superatoms 𝑁 . The pump rate is set
to 𝛾pump/2𝜋 = 1 MHz. The other simulation parameters are the same as in Table 3.2. Increasing the number of
superatoms leads to a decrease of the mean phonon number and the optimal engineered decay rate. The mean
phonon number is very sensitive to changes in the engineered decay rates smaller than the optimum as we enter
the strong coupling regime in this case. For larger decay rates, the phonon number increases as well because of
the broadening, but less steep. (b) shows a heatmap of the mean phonon number in dependence of 𝛾𝑃 and the
single-phonon Rabi frequency ΩHBAR. The number of superatoms is set to 𝑁 = 1, all other simulation parameters
are kept the same. Increasing the coupling strength leads to a decrease in the mean phonon number. The red
squares mark the optimal decay rate given a fixed atom-resonator coupling.

is the Rabi frequency for the transition between states with 𝑛 and 𝑛 + 1 phonons. For a larger coupling, a
larger optimal decay rate is needed to extract the energy before it is transferred back to the resonator. We
can now imagine adding another superatom to the cooling process. Since the phonon number inside the
resonator is already reduced compared to the thermal equilibrium, the coupling strength between the
resonator and the atom is smaller. Therefore, a smaller decay rate is needed to extract the energy before
it is transferred back. This explains why the optimal decay rate shifts to smaller values when increasing
the number of superatoms. However, since the optimal decay value shifts to lower values for more atoms,
there is no significant increase in cooling performance between the optimal decay rate for 𝑁 = 3 instead
for 𝑁 = 1. The phonon number distribution for 𝑁 = 1 and 𝑁 = 3 is shown in Fig. 3.13. For 𝑁 = 1,
there is a visible deviation of the final state from a thermal distribution with the same mean phonon
number. For 𝑁 = 3, the deviation is less visible.

In addition to using more superatoms, we can also increase the coupling strength ΩHBAR between the
atoms and the resonator to increase the cooling performance. Fig. 3.12(b) shows a heatmap of the final
mean phonon number in dependence of 𝛾𝑃 and ΩHBAR for 𝑁 = 1. The mean phonon number decreases
for increasing coupling strength as expected. The optimal decay rate also shifts to larger values for
increasing coupling strength. For ΩHBAR, there is a linear dependence between the coupling strength
and the optimal decay rate. However, for now we will stick to the coupling strength of ΩHBAR = 20 kHz
that was calculated in Section 3.1.2.

The next parameter of interest in the pump rate 𝛾pump. Fig. 3.14 shows the mean phonon number in
the HBAR mode in the steady state in dependence of the pump rate for 𝑁 = 1. As expected from the
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Figure 3.13: (a) shows the phonon number distribution after the cooling process with a single Superatom (𝑁 = 1).
The steady state solution with a mean phonon number of ⟨𝑛⟩ ≈ 1.74 is shown blue, the initial thermal distribution
is marked by the dotted line. The thermal distribution with a mean phonon number of ⟨𝑛⟩ ≈ 1.74 is shown in
orange for comparison. A deviation of the final state from the thermal distribution can be observed. (b) shows the
same for 𝑁 = 3. Here, the mean phonon number in the steady state is ⟨𝑛⟩ ≈ 0.5. The simulation parameters are
the same as in Table 3.2 with 𝛾pump/2𝜋 = 1 MHz and 𝛾𝑃/2𝜋 = 54 kHz.
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Figure 3.14: Mean phonon number ⟨𝑛⟩ in the HBAR mode in the steady state in dependence of the pump rate 𝛾pump
for 𝑁 = 1. The engineered decay rate of the upper Rydberg state is set to 𝛾𝑃/2𝜋 = 54 kHz. The other simulation
parameters are the same as in Table 3.2. As expected from the discussion in Section 3.3.2, increasing the pump
rate leads to a decrease in the mean phonon number. However, the phonon number saturates for large pump rates.

discussion in Section 3.2.3, increasing the pump rate leads to a decrease in the mean phonon number.
However, the phonon number saturates for large pump rates. Increasing the pump rate from 0.5 MHz to
1 MHz only decreases the mean phonon number from ⟨𝑛⟩ ≈ 1.77 to ⟨𝑛⟩ ≈ 1.74, meaning a reduction of
about 2 %. This is the case because we are in a regime where the pump rate is not the limiting factor as
the coupling strength is much weaker than the pump rate. For smaller pump rates, comparable to the
coupling strength, Fig. 3.14 shows a steeper increase of the mean phonon number with decreased pump
rate. A case where having a higher pump rate becomes intereting again is for larger decay rates 𝛾𝑛𝑆 of
the lower Rydberg state. Here, the pump rate needs to compensate to keep the population in the lower
Rydberg state, the cooling reservoir, high.
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Figure 3.15: (a) shows the mean phonon number ⟨𝑛⟩ in the HBAR mode in the steady state in dependence of the
number of superatoms 𝑁 . The engineered decay rate of the upper Rydberg state is set to 𝛾𝑃/2𝜋 = 54 kHz. The
pump rate is set to 𝛾pump/2𝜋 = 1 MHz. The other simulation parameters are the same as in Table 3.2. The red
line shows a fit according to Eq. (3.24) with Γdis as the only free parameter. (b) shows the time evolution of the
expectation value of the population of the upper Rydberg state |𝑃⟩ for a cooled (blue) and a non-cooled (orange)
resonator. The green dashed line shows the time evolution of the population of the upper Rydberg state without
Rydberg decay.

In Fig. 3.12(a), we already looked at the expected phonon number inside the resonator for different
numbers of superatoms 𝑁 . In the following, the dependence of the cooling on the number of atoms
will be discussed in more detail. Fig. 3.15(a) shows the mean phonon number in the steady state in
dependence of the number of superatoms 𝑁 . The engineered decay rate is set to the optimal value for
𝑁 = 1 of 𝛾𝑃 = 54 kHz. The mean phonon number decreases with increasing number of superatoms.
With the choosen parameters, four atoms are already enough to reach a mean phonon number below
0.5. There is no direct analytical expression for the dependence of the mean phonon number on the
number of atoms because of the indirect dependence of the dissipation rate on the resonator occupation,
as discussed in Section 3.2.1. However, we derived Eq. (3.13) from rate equations, where we calculated
the resonator occupation after the cooling under the assumption of an independent dissipation rate. The
occupation is given by

⟨𝑛⟩eq =
⟨𝑛th⟩𝜅

𝜅 + 𝑁 · Γdis
. (3.24)

As a first approximation, we can fit this resonator occupation to the simulation result. We fix the values
of 𝜅 and 𝑛th to the values used for the qutip simulation, and leave Γdis as the only free parameter for the fit.
The fit is shown as the red line in Fig. 3.15(a). One can see that there is an overestimation of the cooling
performance in case of a single atom and an underestimation for larger numbers of atoms (a better fit
would be obtained when omitting 𝑁 = 1). This can be understood by the fact that the assumption of
a phonon number independent dissipation rate becomes a better assumption for a less wide phonon
number distribution. A narrower distribution is achieved when more superatoms contribute to the cooling
scheme. To conclude, Eq. (3.24) gives a good first estimate for the scaling with superatom number.

The next step would be to study the coherent interaction between the Rydberg atoms and the HBAR, by
measuring rabi oscillations between the two Rydberg states as this two-level system exchanges excitations
with the HBAR. Fig. 3.15(b) shows the time evolution of the expectation value of the population of the
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upper Rydberg state |𝑃⟩ for a cooled and a non-cooled resonator. One can see that the cooled oscillator
allows longer coherent dynamics. Two oscillations are visible before they are completely damped out.
For the non-cooled resonator, this is not the case. The reduction of population over time comes from the
decay of the Rydberg states which can be seen by looking at the green dashed line in Fig. 3.15(b) which
shows the time evolution of the population of the upper Rydberg state without Rydberg decay. One thing
to notice here is that the amount of Rabi oscillations is fundamentally limited by

ΩHBAR
𝜅 · ⟨𝑛th⟩

, (3.25)

because the heating rate out of the ground state is given by 𝜅 · ⟨𝑛th⟩. This means that being able to cool
the resonator and observing coherent interactions are two separate things. A good cooling scheme can
already work with lower coupling strengths but a large amount of superatoms participating in the cooling
process. To observe coherent dynamics, a large coupling strength and a low heating rate are needed.

Outlook: Time-Dependent Engineered Decay Rate

As discussed in the last Section, the optimal decay rate of the upper Rydberg state depends on the
coupling strength between Rydberg atoms and the resonator and also the phonon number inside the
resonator through ΩHBAR,𝑛 =

√
𝑛 + 1ΩHBAR. At the moment, the decay rate is kept constant throughout

the cooling process. However, from the phonon number dependency, it becomes clear that there should
be an optimal decay rate for each point in time during the cooling process. Therefore, it might be
intersting to check if a time dependent decay rate could enhance the cooling performance. An idea would
be to start with a large decay rate to quickly extract energy from the resonator and then lower the decay
rate as the phonon number inside the resonator reduces. As a proof of concept, the decay rate could be
decreased lineary to see if the cooling performance is enhanced.

Outlook: Measuring the HBAR Temperature

Until now, it is not clear how to actually measure the success of the cooling process. One possible idea is
to measure the Rydberg state population in 𝑛𝑆 and 𝑛𝑃. In Fig. 3.10(b), we looked at the time evolution
of the expectation values of the atomic state population and the HBAR phonon occupation. It becomes
clear that there is a strong correlation between the ratio of 𝑛𝑆 to 𝑛𝑃 population and the HBAR population.
This might be used to infer the phonon number occupation in the HBAR from the atomic population.
However, this needs to be analyzed quantitatively. In the experiment, a value which is proportional to the
population in 𝑛𝑆 and 𝑛𝑃 could be measured via state selective ionization and detection.

3.4 Experimental Implementation

Throughout the discussion of the simulation, we did not specify the states involved in the cooling scheme
in much detail. Fig. 3.16 shows a possible combination of levels in rubidium-87 that allows realization
of the scheme. The ground state atoms are coupled to the lower |𝑛𝑆⟩ Rydberg state via the probe and
control laser at 780 nm and 480 nm, respectively. The lasers are detuned from the intermediate

��5𝑃3/2
〉

state such that they drive the two photon transition with an effective driving strength Ω. The |𝑛𝑆⟩ state
is coupled to the |𝑛𝑃⟩ state via the interaction with the HBAR mode 𝑚. The interaction strength is
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Figure 3.16: Possible experimental implementation of the cooling scheme. The ground state atoms are coupled to
the lower Rydberg state via a two–photon transition with effective Rabi frequency Ω. The lower Rydberg state is
coupled to the upper Rydberg state via the interaction with the HBAR mode with strength ΩHBAR. The upper
Rydberg state is coupled to an intermediate state via a two–photon transition with effective Rabi frequency Ω

′.
The intermediate state decays fast with rate 𝛾5𝑃,3/2, which introduces the desired dissipation channel.

characterized by ΩHBAR and is controlled by the distance between atoms and resonator surface. Now we
would like to introduce a dissipation channel for the extracted energy. One idea would be to couple the
upper Rydberg state to a different hyperfine level of the

��5𝑃3/2
〉

state which then decays fast with a decay
rate of 𝛾5𝑃,3/2/2𝜋 ∼ 6 MHz [97]. Since the direct coupling is dipole-forbidden, one could introduce an
external microwave driving field that couples the |𝑛𝑃⟩ state to a nearby |𝑚𝑆⟩ Rydberg state. The |𝑚𝑆⟩
state can then be coupled to the

��5𝑃3/2
〉

state via a second 480 nm laser, which is already part of the
experimental setup. By detuning the laser and the microwave driving field from the intermediate |𝑚𝑆⟩
state, this process also happens via a two-photon transition with effective driving strength Ω

′ (in general
we are not limited to the

��5𝑃3/2
〉

state, it is only a convenient option as the laser needed for that is already
available).
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CHAPTER 4

Atom Chip Characterization

The HQO experiment is built with the purpose of interfacing Rydberg atoms with an electromechanical
oscillator. In the last two chapters, we discussed the properties of the oscillator and how it can couple to
the Rydberg atoms. A necessary prerequisite for this is the ability to trap atoms close to the resonator
surface. This will be achieved with an on-chip magnetic trap that is generated by a current carrying
wire on the atom chip. However, the atom trapping is not the only requirement to perform successful
experiments. Another key requirement is the ability to detect the Rydberg atoms after the interaction with
the resonator. As the planned setup with the electromechanical oscillator is in itself already a challenging
experiment that has not been demonstrated before, it is crucial to have a well-established detection
scheme for the Rydberg atoms. For this, we plan to use a coplanar waveguide (CPW) resonator on a
first-generation atom chip without the electromechanical oscillator that can be used to drive the specified
Rydberg-Rydberg transition. The chip has been fabricated and should allow testing and establishing
the Rydberg excitation and detection scheme independently of the coupling to the electromechanical
oscillator.

To determine whether the chip is ready for use in the planned experiment, we will test its two core
functions in this Chapter: the CPW resonator and the magnetic confinement via the trapping wire.
Since both parts derive from specific design choices, a brief overview of the chip layout is provided to
clarify their intended roles in more detail before discussing the characterization. After this, we begin
by characterizing two versions of the resonators, where the second version was designed to correct
the frequency mismatch observed in the first. Using cryogenic transmission measurements, we extract
resonance frequencies, quality factors, and their temperature dependence, and compare the results to
theoretical expectations. In the second part, we measure the critical current of different types of trapping
wires, both on a test chip and on the experiment chip, in order to test their suitability for generating the
required magnetic trapping fields.

4.1 Overview of Atom Chip Design

The first-generation atom chip was designed by Leon Sadowski in his Master thesis [62] and fabricated by
the Forschungszentrum Jülich. An image of the fabricated chip is shown in Fig. 4.1. The chip includes a
superconducting niobium trapping wire which can, in combination with an external magnetic bias field,
form a magnetic trap for the atoms above the chip. The exact position can be controlled via the current
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Figure 4.1: Image of the atom chip that includes a superconducting niobium trapping wire and a superconducting
niobium coplanar waveguide resonator. The chip is fabricated on a c-cut Sapphire substrate and covered with a
500 nm thick gold layer that is grounded. The left inset shows a zoom-in into the finger capacitors that couple
the resonator to the feedlines. The top right inset shows a zoom-in into the trapping region. For this chip, the
bondpads for the trapping wire were increased in size compared to the first design from Ref [62]. Reasons for that
will be discussed in Section 4.3.5.

that runs through the wire and the external bias field. The wire is chosen to be superconducting which
means that below a critical temperature 𝑇𝑐 and critical current 𝐼𝑐, the wire has zero resistance [103]. The
reason for it is to avoid any heating close to the atoms (for more details, the reader is referred to Ref [62]).

Furthermore, the chip features a superconducting niobium CPW resonator to couple to the Rydberg
atoms. The resonator is coupled to the feedlines via finger gap capacitors that are shown in the inset on
the left in Fig. 4.1. The top right inset shows a zoom-in into the trapping region. For the experiment,
it is planned to use the second harmonic mode of the resonator to couple to the Rydberg atoms. This
is because the fundamental mode has a node of the electric field at the position of the atoms, which
would result in no coupling. The second harmonic has an antinode at this position, which maximizes the
coupling strength [62]. Apart from the superconducting niobium structures, the chip is covered with a
500 nm thick gold layer that will be grounded which should help to shield the atoms from stray electric
fields from the substrate [104].

In the experiment, the chip is soldered onto a sample holder made out of copper. Flexible PCBs
(printed circuit boards) are attached to the copper sample holder and wirebonded to the chip using
Aluminium wire bonds. Flexible PCBs are used to safe space inside the cryogenic region.

4.2 Coplanar Waveguide Resonator Characterization

The section about the resonator characterization is structured in the following way: First, the theory
about CPW resonators that is needed to understand subsequent measurements is discussed. After this,
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Figure 4.2: Cross-section of a coplanar waveguide. It consists ot three conductors on top of a substrate. The outer
two are grounded while the central conductor carries the signal. The bottom conductor is grounded as well. The
waveguide is characterized by the width 𝑤 of the central conductor, the gap 𝑠, the thickness 𝑡 of the conductors
and the relative permittivity of the substrate which is given by 𝜖eff for an isotropic material. For Sapphire, the
permittivity parallel to the surface is different to the permittivity orthogonal to it. Consequences of this will be
discussed later in Section 4.2.1. Qualitative electric field lines are shown with black arrow lines.

the measurement method is presented, followed by the measured resonator transmission spectra. Finally,
we will discuss and interpret the results and arrive at implications for the next chip design.

4.2.1 Dependence of Resonance Frequency on System Parameters

In this section, only those properties of CPW resonators are summarized that are required to later
interpret the temperature-dependent resonance measurements. For details beyond that, the reader is
referred to the literature [62, 87, 105]. The main objective is to arrive at a compact expression for the
resonance frequency that incorporates all relevant system parameters. The central result of this section is
Eq. (4.9), which provides an explicit expression for the resonance frequency.

An illustration of a coplanar waveguide is shown in Fig. 4.2. It consists of a center conductor separated
by gaps from two ground planes on either side. The ground and central conductors are fabricated on a
substrate. By fabricating a trace of such a CPW that is open at both ends, a resonator can be formed. The
resonance frequency 𝜔𝑛 of the mode 𝑛 can be tuned by changing the length of the trace and the dielectric
properties of the substrate. By adding capacitive couplings at both ends, the resonator can be coupled to
feedlines to drive it externally. Around the resonance, the coupled resonator can be well described by
an LCR circuit [87], which is capacitively coupled to the feedlines. This is shown in Fig. 4.3. As the
resonator is made out of superconducting niobium, the resistance 𝑅 is set to zero from now on. The
resonance frequency can then be expressed as [87]:

𝜔𝑛 =
1√︁

𝐿𝑛 (𝑇) (𝐶 + 2𝐶𝜅 )
, (4.1)

where 𝐿𝑛 (𝑇) is the temperature dependent inductance of the resonator at mode 𝑛, 𝐶 is the capacitance
of the resonator and 𝐶𝜅 is the coupling capacitance at each end. For Eq. (4.1) to hold, it is assumed that
the coupling capacitance 𝐶𝜅 is much smaller than the resonator capacitance 𝐶 [87]. The inductance 𝐿𝑛
and the capacitance 𝐶 can be expressed in terms of the inductance per unit length 𝐿𝑙 (𝑇), the capacitance
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Figure 4.3: Circuit representation of a CPW resonator that is capacitively coupled to feedlines at both ends. Around
the resonance, the resonator can be described as an LCR circuit with an inductance 𝐿𝑛, a capacitance 𝐶 and a
resistance 𝑅. The coupling capacitors at both ends are represented by 𝐶𝜅 . Adapted from Ref [87].

per unit length 𝐶𝑙, the length of the resonator 𝑙 and the mode number 𝑛 as [87]:

𝐿𝑛 =
2𝐿𝑙 (𝑇)𝑙
𝑛

2
𝜋

2 (4.2)

𝐶 =
𝐶𝑙𝑙

2
. (4.3)

The inductance per unit length 𝐿𝑙 (𝑇) can be composed of two parts [106]:

𝐿𝑙 = 𝐿
𝑔

𝑙
+ 𝐿

𝑘
𝑙 (𝑇) . (4.4)

Here, 𝐿𝑔
𝑙

is the geometric inductance per unit length and 𝐿
𝑘
𝑙 (𝑇) is the kinetic inductance per unit length.

The geometric inductance and capacitance per unit length can be calculated via conformal mapping
techniques [105]. For this, calculation tools are available online [107]. Important parameters that
influence 𝐿

𝑔

𝑙
and 𝐶𝑙 are the width of the center conductor 𝑤, the width of the gaps 𝑠 and the relative

permittivity 𝜖𝑟 of the substrate.
The kinetic inductance is a property of importance for superconducting resonators [108] and arises

from the kinetic energy of the charge carriers [106]. For the current design, the kinetic inductance can
be expressed as [109]

𝐿
𝑘
𝑙 (𝑇) =

𝜇0𝜆(𝑇)
𝑤

𝑞(𝑑/𝜆(𝑇))𝑔𝜖 (𝑤/𝑏, 𝜖) , (4.5)

under the assumption that 𝑤 ≫ 𝜆
2/𝑡, where 𝑡 is the thickness of the superconducting film, 𝜆 is the

penetration depth and 𝑤 is the central trace width. Here, 𝑔𝜖 (𝑤/(𝑠 + 𝑤), 𝜖) is a geometric factor that is
of order unity [109] and 𝑞(𝑥) is a function that depends on the thickness of the superconducting film and
the penetration depth. The function 𝑞(𝑥) is given by [109]:

𝑞(𝑥) = sinh(𝑥) + 𝑥

8 sinh(𝑥/2)2 . (4.6)

The penetration depth determines how deep magnetic fields can penetrate into the superconductor. It is
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temperature dependent [103] and can be expressed with

𝜆(𝑇) = 𝜆(0)√︂
1 −

(
𝑇
𝑇𝑐

)4
. (4.7)

The penetration depth at zero temperature 𝜆(0) and the critical temperature 𝑇𝑐 are material properties
of the superconductor. For our resonator, we expect 𝜆(0) ∼ 100 nm [62] and 𝑇𝑐 = 9.2 K [62]. As a
result, the kinetic inductance increases with temperature and diverges when approaching the critical
temperature 𝑇𝑐. This results in a decrease of the resonance frequency with increasing temperature.
This feature is commonly used to tune the resonance frequency of superconducting resonators [104,
110]. Furthermore, it allows to cleary identify the resonance of a superconducting resonator from the
background spectrum when measuring the transmission spectrum at different temperatures. Combining
Eqs. (4.5) to (4.7) allows expressing the kinetic inductance explicitly in dependence of the temperature.
Furthermore, combining Eqs. (4.1) to (4.4) allows writing down the expected resonance frequency of the
𝑛-th mode of the resonator as

𝜔𝑛 (𝑇) =
𝑛𝜋

𝑙

1√︂
𝐶𝑙

(
𝐿
𝑔

𝑙
+ 𝑙

𝑘
𝑙 (𝑇)

) (
1 + 4𝐶𝜅

𝐶𝑙𝑙

) . (4.8)

For our design, we expect to have 𝐿
𝑔

𝑙
≫ 𝐿

𝑘
𝑙 and 𝐶𝑙𝑙 ≫ 𝐶𝜅 [62]. Therefore, we can expand the resonance

frequency to first order in 𝐿
𝑘
𝑙 /𝐿

𝑔

𝑙
and 𝐶𝜅/(𝐶𝑙𝑙) to obtain:

𝜔𝑛 (𝑇) ≈
𝑛𝜋

𝑙

√︃
𝐿
𝑔

𝑙
𝐶𝑙

(
1 −

𝐿
𝑘
𝑙 (𝑇)
2𝐿𝑔

𝑙

−
2𝐶𝜅
𝐶𝑙𝑙

)
. (4.9)

It shows that for zero kinetic inductance and zero coupling capacitance, the bare resonance frequency is
recovered. However, the kinetic inductance and the coupling capacitance both reduce the resonance
frequency linearly to first order.

Effective Dielectric Constant of Substrate

Before we can use Eq. (4.9) and apply it to the measurements, we have to discuss the properties of
the dielectric substrate of the CPW resonator. The substrate of our chip is made out of c-cut Sapphire.
Sapphire is an anisotropic material with two different values for the relative permittivity, one along the
c-axis (𝜖 ∥𝑟 = 11.5) and one orthogonal to it (𝜖⊥𝑟 = 9.4) [111]. As illustradted in Fig. 4.2, the electric field
lines start and end at the conducting planes of the CPW, and sample both directions of the permittivity.
Therefore, we need to calculate an effective permittivity 𝜖eff that takes this into account. According to
Ref [105], one can transform the substrate into an insotropic one with an effective isotropic permittivity
that can be expressed as:

𝜖eff =

√︃
𝜖
∥
𝑟 · 𝜖

⊥
𝑟 = 10.4 . (4.10)

This allows us now to calculate values for the capacitance per unit length 𝐶𝑙 using Ref [107].
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4.2.2 Designed Resonator Versions

Based on the resonance model introduced above, the CPW resonators were initially designed using only
the geometric contributions to the inductance and capacitance. Specifically, the target frequency was
calculated from

𝜔𝑛 =
𝑛𝜋

𝑙

√︃
𝐿
𝑔

𝑙
𝐶𝑙

, (4.11)

where the kinetic inductance 𝐿
𝑘
𝑙 was neglected under the assumption that it would be small compared to

the geometric contribution 𝐿
𝑔

𝑙
[62]. The coupling capacitance 𝐶𝜅 was likewise omitted, not because it

was expected to be negligible, but because its exact value could not be reliably estimated at the design
stage [62]. Furthermore, the sapphire substrate was treated as isotropic with a relative permittivity of
𝜖𝑟 = 11.5 [62], rather than using the effective permittivity 𝜖eff introduced in Section 4.2.1. Two versions
of resonators were produced, with the key design differences and the corresponding measurement
outcomes, which will be analysed in the next Section, summarized in Table 4.2:

• Version 1 was designed to match the atomic transition at 5.818 GHz using the second harmonic
of the resonator, under the assumption of negligible kinetic inductance and coupling capacitance.

• Version 2 retained the same geometry and layout but featured an increased resonator length. The
modification served two purposes: (i) to compensate the frequency deviation observed in the first
measurement, and (ii) to detune the resonance by −80 MHz on purpose to be able to account for
possible quadratic Stark shift of the Rydberg transition in the experiment.

The parameters assumed during the design, as well as those extracted from later measurements
and model fits, are summarized in Table 4.1. These values provide the reference for interpreting the
measurement data presented in the following Sections. The deviations observed in the first-version
measurements motivated the design modifications implemented in the second version. In the next
Sections, the characterization measurements of both resonator versions will be discussed in detail.

Table 4.1: Expected CPW resonator parameters that determine the resonance frequencies. † marked values are
inferred from fitting Eq. (4.9) to the fundamental mode resonance frequency of the second version resonator, ∗

marked values were used in the previous calculation of resonance frequencies [62], ★ marked values were expected
values [62]. The capacitance per unit length is changed by the effective relative permittivity of the substrate
(𝜖eff = 10.4) compared to the previously used value of 𝜖 = 11.5. Geometry dimensions of the waveguide are given
in Ref [62].

Symbol Description Updated Value (this work) Value Used in Design Unit

𝐿
g
𝑙

Geometric inductance per unit length 4.295 × 10−7 4.295 × 10−7 H m−1

𝐿
k
𝑙 Kinetic inductance per unit length

†6.461 × 10−9 ∗0
H m−1

★1.050 × 10−9

𝐶𝑙 Capacitance per unit length 1.479 × 10−10 1.634 × 10−10 F m−1

𝐶𝜅 Coupling capacitance
†55.0 × 10−15 ∗0 F★56.4 × 10−15
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Table 4.2: Comparison of first and second version CPW resonator designs. The second version was designed to
correct the frequency mismatch observed in the first. The trapping wire bond pads were also enlarged to facilitate
wire bonding. An additional design change was the introduction of a 20 µm gap between the CPW center conductor
and the gold layer. The detuning of −80 MHz in the second version was chosen to account for possible quadratic
DC-Stark shifts of the Rydberg atoms close to the atom chip by adsorbate fields.

Parameter Version 1 Version 2

Design Intent Match 5.818 GHz (2nd har-
monic)

Detuned by -80 MHz (2nd har-
monic)

Target atomic transition 85𝑆1/2 ↔ 85𝑃3/2 Same
Designed target resonance 5.818 GHz ∼5.74 GHz
Geometric Design
Resonator length 20.449 mm 21.222 mm
Coupling capacitor design 2 × 8 finger capacitors Same
Substrate c-cut sapphire Same
Measurement Outcome
Measured resonance (1st harmonic @4K) - 2.83 GHz
Extracted Q-factor (1st harmonic @4K) - ∼ 200
Measured resonance (2nd harmonic @4K) Ambiguous ∼ 5.955 GHz 5.66 GHz
Extracted Q-factor (2nd harmonic @4K) Not reliable ∼ 100 (expected)
Trapping Wire
Bond Pads 200 × 700 µm 800 × 1300 µm

Additional change: Added 20 µm gap between
CPW center conductor and
gold layer

4.2.3 Measurement Method

The transmission measurements were performed by collaborators at the Forschungszentrum Jülich. As
shown in Fig. 4.4, the chip was mounted on our sample holder which was then mounted into their
dilution refrigerator sample holder. The flexible PCBs were wirebonded to the chip. The flex PCBs
were interfaced with coaxial lines leading to a vector network analyzer (VNA). The input signal was
attenuated by approximately 70 dB before the chip, while the output signal was amplified by a cryogenic
HEMT amplifier (gain ∼ 40 dB) followed by room-temperature amplification of ∼ 40 dB. Since the
absolute gain of the full setup is not precisely known, the recorded |𝑆21 | transmission spectra (input
voltage / output voltage) are reported in arbitrary units.

The transmission around the expected resonance frequencies of the first and second harmonic was
recorded repeatedly while slowly warming the setup from the base temperature of a few millikelvin up to
the niobium critical temperature of 9.2 K. For both chips, the measurements were performed with an
input power of −10 dBm from the VNA.

4.2.4 Measured Resonance Spectra

In the following, the measured resonance spectra of both resonator versions will be presented and
discussed.
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Figure 4.4: First version of chip mounted in the sample holder of the Forschungszentrum Jülich. The chip is
wirebonded to flexible PCBs that are connected to coaxial lines leading to a vector network analyzer (VNA). The
inset on the left shows a zoom-in into the chip where the wirebonds to the signal trace of the CPW and ground are
visible. Image courtesy of Roudy Hanna, FZ Juelich.

First Version

A zoom into the region of interest around the expected resonance frequency of the second harmonic
mode is shown in Fig. 4.5. A lot of different peak structures can be seen in the spectrum which can stem
from various signal reflections in the setup (cables, connectors, attenuators, amplifiers, flexible PCBs,
wirebonds, ...). Around the expected position of the resonance frequency, there is no clear peak visible.
However, at higher frequencies (> 5.87 GHz), there are multiple overlaped peaks while one of them at
5.955 GHz at 4 K is cleary larger than the rest. One can see that at 7 K, the spectrum vanishes in the
noise floor. This behaviour is unexpected as the theoretical critical temperature of niobium is around
9.2 K which should allow seeing a visible spectrum beyond 7 K. The reason for this is not known. One
feature that was used as an indication that the 5.955 GHz peak might be the resonator resonance was
that the amplitude of this peak decreases faster with temperature than the rest of the spectrum. It looks
like there is a slight change in frequency with temperature, however, this can also be a result from the
decrease in peak amplitude relative to the amplitude of the peak to the left. Under the assumption that
this is indeed the resonator resonance, we can extract a deviation of about 140 MHz from the target
frequency. As the source of this possible deviation could not be identified from this one measurement, it
was decided to measure a second version of the chip with an adapted resonator length to account for the
frequency shift.

Second Version

The second version of the atom chip was designed with a slightly larger resonator length to account
for the frequency shift that was observed in the first version. The new target frequency was chosen to
lie about 80 MHz below the target frequency of the first version. This choice was made to account for
possible DC-Stark shifts of the Rydberg atoms close to the atom chip by adsorbate fields. The chosen
85𝑆1/2 ↔ 85𝑃3/2 transition shifts due to the quadratic Stark effect only to lower frequencies. Under the
assumption of a linear change in resonance frequency with the total resonator length, the new resonator
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Figure 4.5: Transmission |𝑆21 | of first chip. The spectrum is shown for different temperatures between 1 K and
7 K. The target frequency of 5.818 GHz is shown in black. The resonance frequency of the identified resonator
resonance at 4 K is shown in red. The green dotted line represents the expected resonance frequency using Eq. (4.9)
and the new values from Table 4.1.

length was chosen to be

𝑙2 = 20.449 mm · 5.955 GHz
5.818 GHz − 80 MHz

= 21.222 mm . (4.12)

Here, 20.449 mm is the length of the first resonator version.
For this resonator, the same measurement was carried out by the Forschungszentrum Jülich as for the

first version. The temperature dependent transmission spectrum around the target frequency for the first
and second harmonic mode is shown in Figs. 4.6 and 4.7. Different to the previous measurement, for
both modes, a clear temperature dependent resonance is visible which is expected from the temperature
dependent kinetic inductance. This, plus the fact that the position of the higher resonance is exactly a
multiple of the lower resonance, is a very strong indication that these two resonances are indeed the
first two modes of the CPW resonator. Furthermore, Figs. 4.6 and 4.7 also show a fit of Eq. (4.9) to the
data. Results from this will be discussed in the next Section. Extracted resonance frequencies at 4 K are
𝜔𝑛=1/2𝜋 = 2.83 GHz and 𝜔𝑛=2/2𝜋 = 5.66 GHz. For the fundamental mode, the quality factor can be
extracted by fitting a Lorentzian function to the resonance peak at 4 K as shown in Fig. 4.8. We obtain a
quality factor of 𝑄 ≈ 200 and a resulting linewidth of 𝛿𝜔/2𝜋 ≈ 15 MHz at 4 K.

As one can see in Fig. 4.7, there is still a deviation of about 80 MHz from the target frequency left (for
the second harmonic). In the following, we will analyze the measured data in more detail to understand
the unknown resonator parameters and the frequency deviation.

4.2.5 Extraction of Resonator Parameters from Measurement Data

With Eq. (4.9), the resonance frequency and its temperature dependence was established in Section 4.2.1.
We now apply it to the measured spectra in order to extract the previously unknown circuit parameters
and to assess to what extent the observed frequency shifts can be quantitatively understood with Eq. (4.9).
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Figure 4.6: |𝑆21 | transmission spectrum around the identified 𝑛 = 1 resonance in dependence of the temperature.
The white line represents the target frequency. The red curve represent a fit of Eq. (4.9) using the coupling
capacitance and kinetic inductance as free parameters. Extracted values are given in the main text. The strong
temperature dependence arises from the temperature dependence of the kinetic inductance close to the critical
temperature of 9.2 K.

Figure 4.7: |𝑆21 | transmission spectrum around the identified 𝑛 = 2 resonance in dependence of the temperature.
The white line represents the target frequency. The red curve represents the fitted model from Fig. 4.6. The
extracted frequency is multiplied by two (second harmonic) according to Eq. (4.9). The strong temperature
dependence arises from the temperature dependence of the kinetic inductance close to the critical temperature
of 9.2 K. Background structures of unknown source interfer with the resonator resonance in the region around
5.6 GHz.
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Figure 4.8: Zoom into the measured transmission spectrum around the resonance frequency of the first mode of
the CPW resonator at 4 K. The data is fitted with a Lorentzian function and a quadratic background. We obtain
a quality factor of 𝑄 ≈ 200 and a resulting linewidth of 𝛿𝜔/2𝜋 ≈ 15 MHz at 4 K. The resonance frequency is
determined to be 𝜔𝑛=1/2𝜋 = 2.83 GHz. The quality factor can not be determined more precisely due to other
background structures to the right (not visible in zoom-in) in the spectrum which influences the results depending
on the frequency range that is used for the fit.

Figure 4.9: |𝑆21 | transmission spectrum around the identified 𝑛 = 2 resonance at different resonator temperatures.
A shift of a resonance peak with increasing temperature can be observed. The black dashed line indicates the
orginally targeted resonance frequency at 4 K. The red dotted line represents the predicted resonance frequency at
4 K which is obtained by multiplying the extracted resonance frequency of the first mode by a factor of two.
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Fit of Temperature-Dependent Resonance

Having the change in effective permittivty to the effective value of 𝜖eff = 10.4 and the temperature
dependent behavior in Eq. (4.9) now established, there are two parameters that are not precisely known:
The coupling capacitance 𝐶𝜅 and the kinetic inductance per unit length 𝐿

𝑘
𝑙 (0 K). Using the values from

Table 4.1 and using 𝐶𝜅 and 𝐿
𝑘
𝑙 (0 K) (expressed through the penetration depth 𝜆(0)) as free parameters,

we can fit Eq. (4.9) to the measured temperature dependent resonance frequency of the first mode of
the second version of the resonator. This is shown in Fig. 4.6. From the fit, we can extract a coupling
capacitance of 𝐶𝜅 = 55 pF and a kinetic inductance per unit length of 𝐿𝑘𝑙 (0 K) = 6.48 × 10−9 H m−1.
The coupling capacitance is in good agreement with the design value of 56.4 pF from Ref [87]. The
kinetic inductance per unit length is about six times larger than the expected value of 1.05 × 10−9 H m−1

from Table 4.1 but still in the same order of magnitude. This could be explained by a larger penetration
depth 𝜆(0) than the assumed 100 nm.

Using the obtained values for 𝐶𝜅 , 𝐿
𝑘
𝑙 (0 K) and Eq. (4.9), we can plot the expected temperature

dependent resonance frequency of the second harmonic of the second version. This is shown in Fig. 4.7.
It visually agrees well with the measured data This can be seen more cleary for the expected resonance
at 4 K, which is shown in Fig. 4.9. One has to note that there are multiple background peak structures
which distorts the temperature dependent curve.

The model explains the measured second resonator very well, but it is still unclear how much it helps
to understand the first version. If we take the extracted parameters (𝐶𝜅 , 𝐿

𝑘
𝑙 and 𝜖eff) and apply them to the

geometry of the first resonator, we expect a shift of ∼ −80 MHz from the 5.955 GHz peak. It is shown in
Fig. 4.5 as the dashed “Model”-line. The shift is noticeably smaller than ∼ −140 MHz shift from the
originally intendified target transition. However, it is not certain that this peak was trully the resonator
mode. The spectrum in Fig. 4.5 contains many overlapping features, and without an unambiguous
temperature dependence it is difficult to identify the correct one.

Extracted Linewidth and Quality Factor

The resonator was intentionally designed to operate in the overcoupled regime, i.e. with an external
coupling much stronger than internal losses (𝑄ext ≫ 𝑄int). In this regime, the total quality factor is
dominated by the external coupling and is therefore tunable via the coupling capacitance. The total
quality factor is given by [87]

1
𝑄

=
1

𝑄int
+ 1
𝑄ext

, (4.13)

so that for 𝑄ext ≫ 𝑄int one finds 𝑄 ≈ 𝑄ext. This design choice is intentional as a lower quality factor
yields a broader resonance linewidth, 𝛿𝜔 = 𝜔𝑛/𝑄. This relaxes the requirement for precise frequency
matching between the resonator and the atomic transition.

In Section 4.2.4, a quality factor of 𝑄 ≈ 200 was extracted for the fundamental mode of the resonator
(second version), corresponding to a linewidth of 𝛿𝜔/2𝜋 ≈ 15 MHz at a resonance frequency of
𝜔𝑛=1/2𝜋 = 2.83 GHz. To check consistency, it can be compared to the expected external quality factor.
In the overcoupled limit, where 𝑄 ≃ 𝑄ext, one may use [87]

𝑄≃
𝐶𝑙𝑙

4𝜔𝑛,0𝑅𝐿𝐶
2
𝜅

. (4.14)
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Table 4.3: Comparison between the originally designed resonance frequency (“Designed”), the experimentally
measured value (“Measured”), and the now fully modelled contributions from changed effective permittivity,
kinetic inductance, and coupling capacitance (“Current Model”) for the second harmonic resonance of the second
version resonator. Only the final frequency of 5.661 GHz is directly measured; all shifts are theoretically inferred.
The designed final resonance was expected by the change of the resonator length compared to the measurement of
the first version resonator, which is included in Δ𝜔exp

Quantity Designed Measured Current Model Unit

Bare resonance and permittivity update
Effective-permittivity shift Δ𝜔𝜖eff

/2𝜋 – – 0.288 GHz
Bare resonance 𝜔0,𝑛=2/2𝜋 (𝐿𝑘𝑙 = 0, 𝐶𝜅 = 0) 5.625 – 5.913 GHz

Additional shifts
Kinetic-inductance shift Δ𝜔

𝐿
𝑘
𝑙
/2𝜋 – – −0.045 GHz

Coupling-capacitance shift Δ𝜔𝐶𝜅/2𝜋 – – −0.207 GHz
Infered from first chip measurement Δ𝜔exp/2𝜋 0.113 – – GHz

Final resonance 𝜔𝑛=2/2𝜋 5.738 5.661 5.661 GHz

Here, 𝑅𝐿 is the impedance of the feedline (typically 50,Ω), and 𝜔𝑛,0 is the bare resonance frequency.
Inserting 𝐶𝜅 = 55 pF and 𝑅𝐿 = 50Ω gives 𝑄ext ≈ 280, reasonably close to the measured 𝑄 ≈ 200.
The remaining discrepancy can be explained by deviations in the actual feedline impedance (e.g. due
to wirebond or flex-PCB impedance mismatch), a slightly larger coupling capacitance, or additional
unknown internal losses. For the second harmonic, the quality factor is expected to be half the value of
the fundamental mode, i.e. 𝑄𝑛=2 ≈ 100, since the external quality factor scales inversely with frequency
(see Eq. (4.14)). This agrees reasonably well with the intention of 𝑄design

𝑛=2 ≈ 180 [62].

Decomposition of Frequency Shifts

From Section 4.2.1, we have three different sources that shift the expected resonance frequency
systematically: The shift Δ𝜔𝜖eff

by the reduced effective permittivity 𝜖eff, the shift Δ𝜔
𝐿
𝑘
𝑙

by the kinetic
inductance and the shift Δ𝜔𝐶𝜅 by the coupling capacitance. They are summarized in Table 4.3. This
shows us that there are systematic shifts in total of about 500 MHz (when summing up all absolute
values) allthough the total shift of the resonance frequency between the expected resonance frequency
and the modelled frequency is only about 80 MHz (for the second harmonic of the second version). This
is a result of the fact that the two largest systematic shifts (coupling capacitance and reduced substrate
permittivity) shift in opposite directions.

The analysis shows that substrate anisotropy, kinetic inductance, and external coupling all have a
noticeable impact on the resonance frequency. With these effects now quantified, they can be taken into
account more quantitatively in future designs.

Implications for Future Resonator Design

To conclude the discussion, the measured resonance frequency in dependence of the temperature for the
second chip can be well described by Eq. (4.9) when including a coupling capacitance and a kinetic
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inductance per unit length as free parameters and correcting the effective permittivity of the substrate. The
extracted coupling capacitance is in good agreement with the design value while the kinetic inductance
per unit length is about six times larger than the initial estimate.

In future designs, these three systematic contributions can now be taken into account. Further
measurerements will help to check the consistency of the results. Ideally, at least one chip with the
same design parameters should be measured to check that there are no fabrication related variations
and one with a different resonator length to check the predictions of the model. As an example, one
could try to target the atomic transition at 5.818 GHz again with the second harmonic of the resonator.
Using the extracted parameters from Table 4.1 and Eq. (4.9), this would require a resonator length of
𝑙 = 20.635 mm.

Furthermore, it might be of interest to indentify the sources of background peaks in the transmission
spectra. Especially for the second version, there were multiple overlapping peak structures around the
second harmonic resonator resonance which might interfer with the resonace. Here, one could first
measure the transmission spectra without a chip, just the cables that go to the VNA connected with
each other, to check what peaks originate from sources inside the measurement setup and not the chip.
Secondly, a chip with a normal waveguide instead of a resonator could be measured to check what peaks
are directly related to the chip (e.g. reflection at impedance mismatched places like the wirebonds).

4.3 Trapping Wire Characterization

The operation of the atom chip depends on the trapping wire carrying the required currents to generate
the trapping fields while remaining in the superconducting state. To test this for the current design
and to obtain reference values for future layouts, critical current measurements of niobium z-shaped
trapping wires were carried out at liquid helium temperature (4 K). The aims were: (i) to check whether
the trapping wire of the gold-coated experiment chip reaches the expected current and to measure the
available safety margin, (ii) to measure the current-carrying capacity of niobium wires of different
widths on a dedicated test chip for future chips with different traps, and (iii) to identify possible design
limitations, e.g. regarding the connections to the feedlines via wirebonds.

Measurement Strategy

For the measurements, the gold coated experiment chip and the test chip, shown in Fig. 4.11, are glued
on custom PCBs and operated in a liquid helium dewar. This provides a straightforward way to reach 4 K
without the need of a cryostat [112], while also allowing for high current of up to 10 A which is required
for larger trapping wires on the test chip. For the measurement, a sensing and protection circuit is
designed and tested to detect the superconducting-to-normal transition. It should be able to resolve small
resistance jumps of ∼ 10 mΩ expected in the gold-coated chip (resistance jumps in the multi-z-wire test
chip are expected to be larger), and to switch off the transport current quickly in order to avoid damaging
the chip by overheating.

The measurements were carried out together with Cedric Wind in the laboratory of the Linden group.
In the following, the chip mounting and PCB design is described in Section 4.3.1. Section 4.3.3 discusses
the sensing and protection circuit which meets the technical requirements described in Section 4.3.2.
Section 4.3.4 provides details about the measurement procedure while the results and implications are
discussed in Section 4.3.5.
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(a) (b)

Figure 4.10: (a) shows a PCB design for the critical current measurements (Image taken from KiCad software). The
PCB has a dimension of 38 mm x 40 mm and has space in the middle for an 11 mm x 11 mm chip (marked with
red dotted square). Five traces plus ground are routed to the edge of the chip position with pads for wirebonding.
(b) shows the lithography mask of the test chip with five superconducting niobium z-wires (red) of different widths
(widths are written at each wire). All blue areas are bare substrate.

4.3.1 Chip Mounting and PCB Design

The mounting of the two chips on custom PCBs are described in the following.

PCB Layout and Design Choices

A printed circuit board (PCB), shown in Fig. 4.10(a), was designed to mount the chips such that they fit
into the helium dewar through a KF 50 flange with all cables routed from the same side. The design
allows using it with the experiment chip and the test chip as we will see later. The area where a chip
should be placed in marked in red in Fig. 4.10(a). The PCB allows for five different connections to a
chip with a common ground for all of them. The chip itself will be electrically connected to the PCB
via Aluminium wirebonds, the connection pads on the circuit board are therefore designed such that
multiple wirebonds can fit on one pad.

Interfacing Chips with PCB

Both chips were glued onto the PCB using two-component epoxy (Stycast 2850FT epoxy with Catalyst 9)
as shown in Fig. 4.11. Aluminium wirebonds of 25 µm diameter were attached from the PCB bondpads
to the chip bondpads. The wirebonding was performed by Max Wegerhoff from the Linden group. The
maximally achievable number of wirebonds per pad were used to reduce heating from the bond resistance
as much as possible.

Test Chip

To measure the critical current of z-wire traps of different widths, a test chip was designed. It includes
five different z-wire traps. It is not coated with gold because it is not required for this application
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(a) (b)

Figure 4.11: (a) shows the critical current test chip with five superconducting trapping wires of different width.
The chip is glued using a two component epoxy onto the PCB. The wires are connected to the PCB with multiple
wirebonds. Feed lines for measurement are soldered onto the PCB (current carrying wires are marked red), extra
feedlines on ground and the two outer wires are for four point measurements (marked green). (b) shows the same
setup with a real gold coated experiment chip. The trapping wire is wirebonded to the PCB. Two extra feedlines
are connected for a four point measurement (red cables).

and reduces the number of required lithography steps. The lithography mask of this chip is shown in
Fig. 4.10(b). The test chip was fabricated by the Forschungszentrum Jülich. Fig. 4.11(a) shows the test
chip glued and wirebonded onto the PCB. Copper wires are soldered onto the PCB. Six of them are
current carrying wires (5 different z-wires and ground). Additional copper wires for the two outer z-wires
are soldered to be able to perform four-point measurements, which is a technique for low resistance
sensing [112]. The copper wires can then be connected to a feed through that can be plugged on top of
the helium dewar (see Fig. 4.15). In the following, this chip will be called “test-chip”.

Gold Coated Experiment Chip

A gold coated experiment chip, described previously in Section 4.1, was glued and wirebonded onto the
PCB, shown in Fig. 4.11(b). Here, two copper wires that carry the current are soldered onto the PCB.
Two additional wires (later replaced by the same copper wires) are used for four-point measurements
to be able to detect small resistance jumps in the order of ∼ 10 mΩ. In the following, this chip will be
called “experiment-chip”.

4.3.2 Measurement Requirements and Estimates

To be able to measure the critical current, we have two main requirements. First, we need to be able to
detect the expected resistance jump when the current exceeds the critical current 𝐼𝑐. Above this current,
the superconductor transitions to the normal state. Second, we need to protect the wire from damage by
melting [112] when exceeding 𝐼𝑐 by switching off the current supply quickly.

To calculate the expected resistance of the trapping wire above the critical current, we make a simple
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Table 4.4: Measured and expected resistances of niobium wires on the test chip at room temperature and expected
resistances at 4 K.

Width / 𝜇m Measured 𝑅300𝐾 / Ω Expected 𝑅300𝐾 / Ω Expected 𝑅4𝐾 / Ω
50 103.00 ± 2.00 70 3.5
100 49.00 ± 1.00 35 1.7
300 16.10 ± 0.60 12 0.6
500 9.60 ± 0.50 7 0.4
700 7.60 ± 0.50 5 0.3

estimation. We imagine our z-shaped trapping wire to be one long wire with a rectangular cross-section.
In this case the resistance can be calculated with:

𝑅 = 𝜌
𝑙

𝐴
. (4.15)

Here, 𝜌 is the resistivity of the material, 𝑙 is the length of the wire, and 𝐴 is the cross-sectional area.
The trapping wires on the chip have a thickness of 500 nm and a total length (ignoring the turns and
the bond pads) of 11.6 mm. To calculate the resistivity, we start of with the value for bulk niobium at
room temperature of 𝜌300𝐾 ≈ 0.15Ωmm2 m−1 [113]. This allow to calculate the expected resitances of
the z-wires at room temperature, given in Table 4.4. The measured resistances at room temperature of
the test chip are included in Table 4.4 as well and give the right order of magnitude compared to the
estimation, higher measured values can be attributed to a higher resistivity in the sputtered niobium films
compared to the bulk.

However, at liquid helium temperature, the resistivity is lower. We assume a residual-resistivity ratio
(RRR =

𝜌300𝐾
𝜌10𝐾

) of 20 [114], leading to the expected values in Table 4.4. Here one has to note that the
value for the RRR depends on the quality of the sputtered film and can be smaller than 20 (between 9 and
21 in Ref [115]) which would relax the required measurement sensitvity. From the expected resistance
values at 4 K above the critical current, we infer a required sensitivty in the order of ∼ 100 mΩ.

For the gold chip, the situation is different. At the moment the supercoductivity of the niobium wire
breaks, the current can run through the gold film instead of the wire. The gold film is expected to have a
much smaller resistance than the wire itself. We can make a very simple estimation of this resistance to
get an idea of the order of magnitude we need to be able to detect where we assume contact resistance to
be negligible. Assuming a resistivity of gold of 𝜌300𝐾 ∼ 2.4 × 10−8

Ωm [113] and an RRR of 10 (exact
value depends also on the quality of the sputtered gold film [116]), we can calculate the sheet resistance
𝑅𝑆 given a gold layer thickness of 𝑑 = 500 nm to be 𝑅𝑆 =

𝜌300𝐾
RRR·𝑑 ∼ 5 mΩ. Assuming a path length of

𝑙 = 11.6 mm and a free gold layer to the left and right of the niobium wire of width 𝑤 = 1 mm (which is
already an overestimation because of the cpw resonator on one side of the trapping wire), we get an
estimation for the resistance of the new current flow path through the gold layer of 𝑅Au = 𝑅𝑆

𝑙
2𝑤 ∼ 30 mΩ.

From this, we conclude that we would like to be able to detect resistance jumps in the order of 10 mΩ.

4.3.3 Sensing and Protection Circuit

In the last Section, we discussed the requirements for the sensing and protection circuit. The main goals
are to detect the superconducting-to-normal transition, measure 𝐼𝑐, resolve small resistance jumps of
10 mΩ, and switch off the transport current quickly to avoid damage from heating. In the following, the
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Figure 4.12: Sensing and protection setup, based on Ref [112]. The differential voltage drop across the chip (if
needed via four-point measurement for increased sensitivity) is amplified and compared via a comparator to the
amplifed voltage drop across a shunt resistor 𝑅𝑠. A set-reset latch shuts down the current supply permanently if
the amplified chip voltage exceeds the amplified shunt voltage.

implemented design is discussed.
The design process was guided by a chapter about setting up a critical-current measurement system in

[112]. Fig. 4.12 shows the implementation idea for our measurements. A shunt resistor 𝑅𝑠 is used as
a resistance reference to compare to the resistance of the chip 𝑅𝑐. Both resistances are measured by
measuring and amplifying the differential voltage drop across both. Depending on the needed sensitivty,
a four-terminal measurement is used to only measure the differential voltage drop across the chip and not
the feedlines. The amplified signals are then compared with a comparator. A set-reset latch is used to
trigger a switch that interrupts the current supply, when the chip signal exceeds the reference signal,
permanently until reset.

To implement the setup from Fig. 4.12, a circuit was designed and simulated in LTSpice (shown
in Fig. 4.13). In the following, we will go through the important parts. In the circuit, the reference
resistance is named R3 (chosen to be 0.1Ω), the chip resistance R11 and the feed line resistance R13.
Two intrumentation amplifiers, consisting of three operational amplifiers each, are used to measure
the differential voltage drop across the reference resistor and the chip. The instrumentation amplifier
for the chip can be wired in two different configurations. In the first configuration (shown in blue), a
four-terminal measurement is performed by connecting the inputs to the four-terminal feedlines (higher
sensitivity). In the second configuration (shown in red), a two-point measurement is performed by
connecting the inputs to the two current-carrying feedlines (lower sensitivity). The amplification of
both instrumentation amplifiers can be tuned with potentiometers R4 and R20 which is, in addition to
having a high input impedance, the reason to for using an instrumentation amplifier instead of a simple
differential amplifier.

The outputs of both amplifiers are fed into a comparator that outputs the negative rail voltage when the
chip signal exceeds the reference signal and the positive rail voltage otherwise. A non-inverting Schmitt
trigger is used to supply a low signal to the switching MOSFET when the input is negative, meaning the
chip signal exceeds the reference signal. Once this state is reached, the output of the Schmitt-trigger
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remains negative until reset. This is important to avoid oscillations of the MOSFET after the switching
due to undefined comparator output.

The potentiometers of the instrumentation amplifiers were chosen to be 100 kΩ. The amplification 𝐺

of an instrumentation amplifier is given by [117]:

𝐺 = 1 +
2𝑅8
𝑅4

, (4.16)

where 𝑅4 and 𝑅8 are in reference to Fig. 4.13. If we assume 𝑈𝑐 and 𝑈𝑠 to be the amplified differential
voltage drops across the chip and the reference resistor, respectively, we can express the ratio as:

𝑈𝑐

𝑈𝑠
=

𝑅𝑐

𝑅𝑠

𝐺𝑐

𝐺𝑠
, (4.17)

where 𝑅𝑐 and 𝑅𝑠 are the chip and reference resistances, respectively, and 𝐺𝑐 and 𝐺𝑠 are the gains of the
chip and reference instrumentation amplifiers, respectively. Assuming the differential voltage increase
across the chip to be 𝑅𝑐 = 0.1𝑅𝑠 = 10 mΩ, we can see that a detection of this resistance (and switching
the MOSFFET), where 𝑈𝑐 exceeds 𝑈𝑠, is no problem for 𝐺𝑐 > 10𝐺𝑠. The circuit is therefore suited
for our application. However, it is important to note that the resistors used for the amplifiers are 1%
tolerance resistors as we wanted to build a circuit from readily available components. Consequently, the
circuit is not intended for high-accuracy current measurements, since the resistor tolerances lead to gain
errors and poor common-mode rejection [117]. In our case, this is acceptable because the amplifiers are
not used for precise current sensing, but only to detect the expected resistance steps of ≤ 10 mΩ and
trigger the MOSFET switching. The actual current through the chip is measured independently using a
current clamp.

The circuit was built on a perforated board and tested with a dummy load of 0.1Ω to verify its
functionality before using it in the actual measurement. The built board in shown in Fig. 4.14. The
switching time 𝜏 was measured to be 𝜏 ≤ 20 µs, where the determination of 𝜏 was limited by the
bandwidth of the current clamp of 20 MHz [118]. This switching time is expected to be fast enough.

4.3.4 Measurement Procedure

To perform the measurement, a power supply for the sensing circuit and a voltage controlled power supply
for the current supply were set up with a common ground. The characterization was first conducted on
the five-wire test chip. The connection wires were trimmed such that the PCB remained fully immersed
in liquid helium without touching the bottom of the dewar. The wires were routed through an external
feedthrough mounted on top of the dewar, as shown in Fig. 4.15. To reduce thermal stress and prevent
detachment of the chip from the PCB during cooldown, the assembly was pre-cooled in liquid nitrogen
before being gradually lowered into the helium bath. Superconductivity of the z-wires was verified by
measuring the resistance between the feedthrough terminals using a standard multimeter. A reading of
zero resistance confirmed that, as any residual resistance would have been detectable otherwise (see
Table 4.4).

The sensing and protection circuit was connected to the feedlines of one trapping wire per measurement.
Current was monitored using a current clamp on the supply lead. The signals from the instrumentation
amplifiers were recorded via an oscilloscope to configure the amplifier gains such that the amplified
voltage drop across the reference resistor slightly exceeded that across the superconducting chip. This
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Figure 4.13: Schematic of sensing and protection circuit. It consists of two instrumentation amplifiers for
differential voltage drop measurements across the chip and a sensing resistor, a comparator and Schmitt trigger for
state detection and switching trigger and a MOSFET for fast on/off switching of current supply. More details are
provided in the main text. The upper instrumentation amplifier is either wired to measure the voltage drop only
across the trapping wire (four-terminal measurement, shown in blue) or across the entire chip + current feedlines
(shown in red). Resistors R4 and R20 are tunable 100 kΩ potentiometers to set the amplification factor.

ensured that after reaching the critical current 𝐼𝑐, the comparator triggers the MOSFET to switch off
the current supply. The current at the trigger point is recorded as the critical current 𝐼𝑐. Multiple
measurements were acquired for each wire.

The same procedure was applied to the experiment chip, with two adjustments. First, the expected
resistance jump at 𝐼𝑐 is much smaller (see Section 4.3.2). Consequently, the amplifier inputs were
reconfigured for four-point sensing to increase sensitivity to small resistance jumps. Second, damage
to the wire was not anticipated as the current can flow through the gold layer instead of the z-wire,
after reaching 𝐼𝑐. The shunt resistance amplification was therefore increased such that no comparator
triggering could happen, allowing uninterrupted recording of the full current–voltage trace.
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Figure 4.14: Picture of assembled sensing and protection circuit. Black knobs are the potentiometers that tune the
amplification factors of the instrumentation amplifiers. The BNC outputs are used to monitor the following: both
instrumentation amplifier output and the gate voltage of the MOSFET. For the reference resistor, 10 parallel 1Ω
resistors were used.

Figure 4.15: Image of feed through attached to the Helium dewar. The test chip is hanging into the dewar (indicated
by dashed lines) and is held in place by the wires soldered onto the PCB that are connected to the feed through.
The corresponding wires were connected to the sensing and protection circuit outside the dewar (not shown in the
image).
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4.3.5 Results and Discussion

Here we discuss the results obtained from the critical current measurements for the test chip and the
experiment chip. The measured critical currents for the test chip are summarized in Fig. 4.16(a). The
first important observation is that the 100 µm wire reaches 2 A while staying superconducting which
is the required current for the atom trapping. The measured critical current 𝐼𝑐 of about 2.75 A agrees
reasonably well with the estimated critical current of 𝐼𝑐 ≈ 2.9 A [62]. The smaller critical current is
expected due to the sharp beding of the wires that can lead to current crowding [119]. The wires show
an increase of the measured critical current with the wire width, which is expected as more current can
flow at the same current density due to the larger wire cross-section. One thing to notice is the small
critical current of the 50 µm wire compared to the other ones.

To understand the measured data, we will take a look into the expected dependence. In the ideal case
of a uniform current distribution across the entire cross-section of the wire, the critical current 𝐼𝑐 is
reached when the current density equals the depairing limit. In this regime, the maximum current is
directly proportional to the wire width [103]:

𝐼𝑐 ∝ 𝑤 . (4.18)

However, this assumption is only valid for thin wires where the magnetic self-field can be neglected. In
our case, the wire width (∼ 100 µm) is much larger than both the thickness (500 nm) and the London
penetration depth (∼ 100 nm [62]). Under these conditions, the current distribution is modified by the
wire’s self-field, and the critical current is instead expected to follow a square-root dependence [120]:

𝐼𝑐 ∝
√
𝑤 . (4.19)

A further reduction is expected due to geometry. The trapping wires contain multiple 90◦ bends, which
are known to induce current crowding at the inner corners, suppressing the critical current below the
straight-wire limit [119]. This effect is also width-dependent.

From the measured data in Fig. 4.16(b) it becomes clear that the increase of the critical current with
the wire width is smaller than Eq. (4.19) suggest for wires of width > 100 µm. This indicates two points,
first that we are most likely self-field-limited and second that the 90 degree turns seem to have significant
influence on the critical current. The low critical current in the 50 µm wire may be attributed either to
stronger current crowding at small widths or to a fabrication defect.

These observations suggest that if the critical current of a trapping wire becomes a limiting element in
future designs, the geometry should be optimized, for example by replacing sharp corners with rounded
ones, to mitigate current crowding and increase the critical current [119].

For the experiment chip, the important results are depicted in Fig. 4.17. Here, the measured current
and the measured amplified voltage drop across the chip are shown as a function of time (current was
increased over time by hand). The lower plots show the calculated resistance using Eq. (4.16) and a
potentiometer value during this measurement of 18 kΩ.

A jump of the voltage drop across the chip and a dip in the current occurs at 𝐼 ≈ 2.8 A which agrees
well with the previously measured value of 𝐼𝑐 = 2.75 A on the test chip. This indicates that this jump
arises due to the breakdown of the supercoductivity of the whole wire. The increase in resistance of
∼ 10 mΩ qualitatively agrees with the expected resistance jump from Section 4.3.2. However, these were
not the only observed resistance jumps. In Fig. 4.17(b), two distinct jumps in the voltage drop across the
chip are observed at around 0.6 A. These jumps were reproducable within the range of 0.6 A - 0.9 A.
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Figure 4.16: (a) Measured critical current of z-shaped superconducting niobium wires on the test chip as a function
of wire width. The 100 µm wire reaches the atom trapping requirement of 2 A. The small critical current of the
50 µm wire is discussed in the main text. Error bars are the standard deviation of multiple measurements per wire.
(b) Shows same data as in (a), but shown on a log-log scale. A slope of 1/2 is included in the plot for comparison.

The calculated resistance jumps are shown in the bottom which are on the order of ∼ 1 mΩ. The origin
of these jumps is not fully clear. A possible explanation could be that parts of the wire become normal
conducting near the pads for wirebonding due to local heating at the wirebonds or current crowding
[119] at the wire bends. This would agree that always two jumps appear at similar current values. This
would be expected if the cause is at the wirebond pads as we have the same geometry of them on both
sides. The fact that the resistance jump is an order of magnitude smaller than the one at 2.8 A also
indicates that not the whole wires changes to the normal conducting state. This measurement motivated
the increase of the size of the bondpads for the z-wire from 200 µm × 700 µm to 800 µm × 1 300 µm,
which we already saw in the beginning in Fig. 4.1.
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Figure 4.17: (a) Time trace of the experiment chip current (blue) and the amplified voltage drop across the chip
(red). A distinct current drop at approximately 2.8 A, accompanied by a simultaneous voltage rise, indicates the
transition out of the superconducting state. This critical current is consistent with the values shown in Fig. 4.16(a).
(b) Time trace showing two separate voltage jumps (red), each accompanied by a small reduction in current (blue),
reproducibly observed within the range 0.6 A − 0.9 A. The lower panels display the corresponding resistance,
calculated as 𝑅 = 𝑈𝑐/𝐺𝑐 𝐼 using a potentiometer setting of 18 kΩ for the instrumentation amplifier gain.
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CHAPTER 5

Conclusion and Outlook

In this thesis, significant steps towards interfacing Rydberg atoms with a high-overtone bulk acoustic
wave resonator (HBAR) were taken. An analytic model for the evanescent electric field of the resonator
was developed. It allowed for an understanding of the piezoelectric effect that can mediate atom-phonon
coupling and to derive scaling laws of the electric field in dependence of important system parameters
such as the resonance frequency. Building on this, numerical electrostatic simulations were performed to
obtain quantitative results for the single phonon electric field. This enabled the determination of the
electric field in dependence of all experimentally tunable system parameters, i.e., the resonator frequency,
the resonator thickness, the resonator mode waist and the atom-surface distance. Building on these
results, the single phonon Rabi frequency of Rydberg atoms coupled to the HBAR was determined. The
results showed that single phonon Rabi frequencies in the 20 kHz regime are achievable with realistic
experimental parameters. Comparing this to the expected decay rates of both systems, about 1 kHz for
the Rydberg atoms and below 1 kHz for the HBAR, indicates that the strong coupling regime is within
reach.

As the experiment will be conducted in a cryogenic environment at finite temperatures around 4 K, the
HBAR will be thermally occupied by phonons. For the targeted frequency of 5.8 GHz, a mean thermal
phonon occupation of about 14 phonons is expected. The first goal of the HQO experiment is to cool
the HBAR to its quantum mechanical ground state using Rydberg atoms as an active cooling agent. To
assess the feasibility of this, an appropriate master equation model for a continuous-wave–based cooling
scheme using collective Rydberg excitations, so-called superatoms, was developed and numerically
solved. The results revealed superiority of using 𝑁 collective Rydberg excitations in a cloud of atoms
compared to 𝑁 single Rydberg atoms in terms of cooling performance. Using experimentally achievable
parameters, already four Rydberg superatoms would theoretically be enough to reduce the mean phonon
occupation inside the resonator below 0.5.

In parallel to the theoretical and numerical studies, this thesis also included the characterization and
design adaptations of a first-generation atom chip without the HBAR. This device, incorporating a
superconducting wire trap and a coplanar waveguide resonator, should serve as a testbed to establish
atom trapping, Rydberg excitation, and microwave coupling in a cryogenic-compatible chip environment.
During the work of this thesis, the coplanar waveguide resonator characterization measurements were
analyzed. A model including an adapted substrate permittivity, the temperature-dependent kinetic
inductance and frequency shifts due to external coupling allowed to understand systematic frequency shifts
of the resonator resonance. Beyond the microwave resonator, superconducting trapping wires of different
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Chapter 5 Conclusion and Outlook

widths were characterized at liquid helium temperatures. It allowed for important design adaptations of
the trapping wire on the experiment chip regarding the pads for wire bonds and showed that expected
currents for magnetic trapping can run through the wire without them leaving the superconducting
state. Furthermore, the measurements provide references for possible future trapping wires of different
geometries.

To conclude, the key outcome of this thesis is the ability to quantitatively evaluate the coupling strength
between a Rydberg atom and an HBAR as a function of experimentally tunable parameters, together
with the theoretical demonstration that ground state cooling of an HBAR is feasible using collective
Rydberg excitations as an active cooling agent.

Outlook

Theoretical numbers are known now. The next step is to integrate an HBAR into an atom chip design
that enables trapping of atoms at distances of 35–50 µm from the resonator surface to enable interaction
between the atoms and the HBAR. As an intermediate step, a chip that combines a microwave resonator
with an HBAR—so the HBAR can be driven classically by an external source—would provide strong
classical atom–HBAR coupling and a practical first step before single-phonon interactions. In this
regime the atoms can also serve as probes of the resonator surface (e.g., mapping adsorbate-induced stray
fields). Here, care must be taken to stay in the undercoupled regime such that the quality factor is still
determined by the high intrinsic quality factor of the HBAR and not through the external coupling [87].
In parallel with HBAR integration, effort should also be devoted to implementing a well-engineered
electrode setup for stray electric field compensation, which is essential for stable Rydberg excitation
close to the resonator surface as one expects adsorbate electric fields close to it [88–91] that can shift
the Rydberg atoms out of resonance. Altogether, this platform provides a promising route to study
interactions between atoms and a macroscopic mechanical resonator.
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APPENDIX A

Appendix

A.1 FEM Eigenfrequency Study: Mesh Refinenment of inner Quad
Mesh of HBAR

As an example, the variation of the quad mesh element number (inner mesh of HBAR) is shown in
Fig. A.1. Here, a Gaussian function was fitted to the simulated strain profile inside the piezo. The plots
show results from the fit: Strain amplitude, center position, mode waist and relative deviation between
simulated strain profile and fitted Gaussian. All other mesh parmeters were kept constant. A number of
12 was found to be the optimum with a relative deviation from the fit bellow a percent.

The same methode was used for the mapped mesh (region between inner cylinder and outer free
tetrahedal region) and the number of mesh elements of the swept mesh along the 𝑧-direction.

A.2 Cooling Simulations: System Hamiltonian

The explicit atomic Hamiltonian is given by:

𝐻atom =



0 1
2

(
𝑒
−𝑖𝑡𝜔 + 𝑒

𝑖𝑡𝜔
)
Ω 0 0 0

1
2

(
𝑒
−𝑖𝑡𝜔 + 𝑒

𝑖𝑡𝜔
)
Ω 𝜔𝑤 0 0 0

0 0 𝜔𝑤 0 0
0 0 0 𝜔𝑝

1
2

(
𝑒
−𝑖𝑡𝜔′

+ 𝑒
𝑖𝑡𝜔

′ )
Ω

′

0 0 0 1
2

(
𝑒
−𝑖𝑡𝜔′

+ 𝑒
𝑖𝑡𝜔

′ )
Ω

′
𝜔𝐸


(A.1)

where 𝜔𝑤 , 𝜔𝑝, and 𝜔𝐸 are the energies of the states |𝑊⟩, |𝑃⟩, and |𝐸⟩, respectively. The Hamiltonian
of the resonator mode is a simple harmonic oscillator (zero-point energy is dropped):

𝐻osc = 𝜔𝑚𝑎̂
†
𝑎̂ (A.2)

where 𝑎̂ and 𝑎̂
† are the annihilation and creation operators for the resonator mode, respectively, and 𝜔𝑚

is the frequency of the resonator mode. The interaction Hamiltonian describes the coupling between the
upper Rydberg state and the bright and dark Rydberg state via the resonator mode. Here, the rotating
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Figure A.1: Mesh refinement study for FEM eigenfrequency analysis. Here, the number of quad mesh elements in
the inner cylinder of the HBAR was varied. A Gaussian function was fitted to the strain profile inside the piezo.
The four plots show results from the fit: Strain amplitude, center position, mode waist and relative deviation
between simulated strain profile and fitted Gaussian. All other mesh parmeters were kept constant. A number of
12 was found to be the optimum with a relative deviation from the fit bellow a percent.

wave approximation is alreay applied:

𝐻int =
ΩHBAR

2

(
|𝑃⟩ (⟨𝐷 | + ⟨𝑊 |) ⊗ 𝑎̂ + (|𝐷⟩ + |𝑊⟩) ⟨𝑃 | ⊗ 𝑎̂

†
)
. (A.3)

We now transform the atomic Hamiltonian into an appropriate rotating frame where we can apply the
rotating wave approximation using the unitary transformation

𝑈 =

𝑁∑︁
𝑖

𝑒
−𝑖𝜔𝑖 𝑡 |𝑖⟩ ⟨𝑖 | (A.4)

{𝜔𝑖}
5
𝑖=1 = {1, Δ + 𝜔𝑊 , Δ + 𝜔𝑊 , Δ + 𝜔𝑃 − 𝜔𝑐, Δ − Δ

′ − 𝜔𝑚 + 𝜔𝐸}

where Δ = 𝜔 − (𝜔𝑊 − 𝜔𝐺) and Δ
′
= 𝜔

′ − (𝜔𝑃 − 𝜔𝐸) are the detunings of the two-photon transitions
from the respective atomic transitions, and 𝜔𝑚 = 𝜔𝑃 − 𝜔𝑊 is the Rydberg transition frequency which is
set to be resonant with the resonator mode frequency.

The transformed Hamiltonian is then given by [92]:

𝐻 = 𝑈
†
𝐻𝑈 − 𝑖𝑈

† ¤𝑈 (A.5)

After transforming the Hamiltonian we arrive at the following time-dependent atomic Hamiltonian:
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𝐻atom =


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
(A.6)

We now apply the rotating wave approximation (RWA) by neglecting all oscillating terms in Eq. (A.6).
We end up with the system Hamiltonian from Eq. (3.17) in Section 3.3.1.

A.3 Statement on Digital Tools and AI Assistance

In the preparation of this thesis, digital tools––including AI-based assistance––were used for supporting
tasks such as language polishing, code writing for data plotting and analysis, code debugging, code
documentation and document formatting (see Table A.1). All results were verified independently by the
author.

Table A.1: Overview of digital and AI-based tools structured by purpose of use.

Task / Purpose Tools Used Role of the Tools
Writing and Language Pol-
ishing

ChatGPT, GitHub Copilot Grammar correction, spelling checks, sentence
restructuring for clarity, sentence suggestions,
synonym search, and text structuring.

LaTeX Formatting and
Typesetting

ChatGPT, GitHub Copilot Assistance with LaTeX syntax, table format-
ting, and reference styling.

Coding and Debugging ChatGPT, GitHub Copilot,
Gemini

Code writing for data plotting and analysis,
code documentation, code debugging. Numer-
ical models and simulations were designed and
verified by the author.

Literature Search ChatGPT, Perplexity, Gemini Literature search.

Plotting of Data Matplotlib (Python), COM-
SOL

Plotting of data and plots exported in COMSOL

Data Analysis Scipy (Python) Fitting of functions to data
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