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CHAPTER 1

Introduction

Quantum optics experiments study the interaction between quantized matter and photons, the latter
are the fundamental particles of light [1]. As a quantum emitter it is natural to consider single atoms.
However, the interaction probability between a single photon and a single atom is very small [2].

One method to increase the interaction strength is placing the atom inside an optical cavity, such that
the single photon passes the atom multiple times increasing the probability of interaction [3, 4].

Alternatively, one can use ensembles of 𝑁 atoms collectively coupled to the light field of interest.
Using Rydberg states it is possible to turn many-atom systems into saturable quantum emitters. For
sufficiently small ensembles the strong interaction between atoms in the Rydberg state limits the number
of excited atoms to one [5]. These ensembles are so-called superatoms and make it possible to achieve
coupling enhanced by

√
𝑁 between photons and a quantum emitter. The enhanced coupling of superatoms

has been observed in Rabi oscillations mapped onto few-photon pulses [6], when using superatoms as
single-photon sources [7, 8] or when utilizing superatoms as manipulable qubits [9, 10].

Aside the coupling strength, which can be tuned through various parameters such as the strength of
the driving field or the number of atoms, another important figure of merit for the quality of a superatom
is the coherence time [11]. The coherence time characterizes how long an information transcribed from
the light onto the superatom can be reliably stored. A short coherence time leads to a loss of information
and varying results when repeating an experiment [12].

In the course of this thesis the coherence time of a superatom is probed by driving few-photon
Rabi oscillations. From previous works it is known that the coherence time is limited due to multiple
effects: thermal motion of the constituent atoms [13], inhomogeneous density of the atomic cloud [14],
differential light shifts due to different trapping potentials for ground and Rydberg state [15] and
off-resonant decay from the Rydberg state [6, 16, 17]. This thesis investigates an additional source of
decoherence1, which is Frequency noise of the lasers driving the system. Frequency noise in the driving
field as a source of decoherence has already been described for single Rydberg atoms in tweezers and for
ion experiments [20–22]. The goal of this thesis is to characterize the noise of the Rydberg excitation
laser system and to assess whether laser frequency noise contributes significantly to the dephasing of the
superatom. The structure of this thesis is as follows:

1 Decoherence typically refers to the loss of phase information due to an entanglement between the quantum system and the
environment [18]. In the context of the superatom the term decoherence is commonly used to describe all mechanisms
leading to a dephasing. These mechanisms can be internal, e.g. thermal dephasing [6], or connected to the environment, e.g.
as frequency noise of the driving field [19].
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Chapter 1 Introduction

Chapter 2 introduces a mathematical model describing the dynamics of the Rydberg superatom. This
includes an overview on the other mechanisms leading to the decoherence. In the end of this chapter the
addition of a term accounting for frequency noise induced dephasing to the initial mathematical model is
discussed.

In Chapter 3, the experimental setup used for the realization of Rydberg superatoms is introduced, and
it is presented how superatom Rabi oscillations are detected with few-photon-pulses. This is followed by
a description of the feedback loop used for frequency stabilization of the excitation lasers. It is discussed
how the settings of the feedback loop determine the noise characteristics of the driving fields.

Chapter 4 introduces an optical setup that allows to measure the noise characteristics of any laser over
a broad range of infrared wavelengths. Afterward, the data post-processing to extract the frequency noise
spectral density the laser light source is described.

In Chapter 5, the measured frequency noise spectra of the excitation lasers are presented and discussed.
Using a simulation, the impact of the recorded frequency on few-photon Rabi oscillations noise is
numerically calculated. The simulation is then used make a prediction on the significance of frequency
noise as a source of superatom dephasing. Finally, the simulation effect is compared to the experimentally
observed dephasings.

2



CHAPTER 2

Coherent Single-Photon-Matter Interaction using
Rydberg Superatoms

2.1 Rydberg Atoms and their Interactions

Shortly after Balmer had observed the line-spectra in hydrogen Rydberg proposed a formula describing
the wavelengths of the observed spectral lines [23]

1
𝜆
= 𝑅∞

(
1
𝑛

2
1
− 1
𝑛

2
2

)
(2.1)

This proposal sets no boundaries for the choice of 𝑛1 and 𝑛2, except from being integers. Therefore, this
formula postulates the existence of highly excited states with a high principal quantum number 𝑛. These
highly excited states can be experimentally observed and are called Rydberg states. They have distinct
features, such as a long lifetime (scaling with 𝑛−3) and a large wave function of the valence electron
(scaling with 𝑛2) [24]. The large distance between the negatively charged electron and the positively
charged atomic core increases the probability to acquire induced dipole moments compared to ground
state atoms. This results in a strong response of in the state energy to external electric and magnetic
fields, which is typically described by the polarizability 𝛼𝑅𝑦𝑑 scaling with 𝑛7 [24, 25]. The shift of in
the Rydberg level caused by an external electric field 𝐸 is given by [26]

Δ𝑅𝑦𝑑 = −1
2
𝛼Ryd𝐸

2

ℏ
(2.2)

where ℏ denotes the reduced Planck constant.
Due to the strong response of Rydberg atoms to electric fields they also strongly interact with each

other by inducing dipole moments. If the distance between two Rydberg atoms is significantly larger than
their electronic wavefunction, the interaction Hamiltonian can be approximated by multipolar expansion
leading to [24]

𝑉ddi =
1

4𝜋𝜖0

®𝑑1 · ®𝑑2 − 3(𝑑1 · ®𝑛) (𝑑2 · ®𝑛)
𝑅

3 (2.3)
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Figure 2.1: Basic principles of the Rydberg superatom. (a) Simple sketch of the experimental system. A single
Rydberg atom (dark purple circle) with multiple ground state atoms (light purple) inside its blockade volume
(dashed yellow circle). The atomic cloud is illuminated with single photons resonant to the ground-to-Rydberg
transition (brown arrows) and the transmitted light is measured. (b) Energy scheme of system of two atoms as a
function on the interatomic distance 𝑅. Each atom can be either in the ground state (denoted as 𝑔) or the Rydberg
state (denoted as 𝑟). All energy levels are labeled with the corresponding collective state. The brown arrows
indicate the energy brought into the system by the external driving field. The energy of |𝑟, 𝑟⟩ is shifted due to
the van der Waals interaction of the Rydberg atoms, giving rise to the blockade effect. (c) Adiabatic elimination.
Level scheme of a single atom with the ground state |𝑔⟩ the intermediate state |𝑒⟩ and the Rydberg state |𝑟⟩. The
two-sided-arrows indicate an external field driving the system: The probe field (red) with Rabi frequency Ω𝑝 , the
control field (light blue) driving with Ω𝑐 and the effective field (brown). If the detuning is large enough one can
consider the system instead of a three-level-system (left side) as a two-level system driven by the effective field
(right side).

where 𝑑1 and 𝑑2 are the dipole operators of the two atoms, ®𝑛 is the normalized vector between the atoms
and the interatomic distance 𝑅 characterizes the strength of the dipole-dipole interaction 𝑉ddi. For the
case where both Rydberg atoms are in the same s-state, applying non-degenerate perturbation theory
leads to a van der Waals interaction between the atoms scaling with 𝑉vdW = 𝐶6/𝑟

6 as illustrated in
Figure 2.1 [24, 27, 28].

This strong interaction gives rise to the Rydberg blockade: The presence of a Rydberg atom shifts the
energy levels of other atoms in its vicinity [29, 30]. If an atomic ensemble is illuminated with a field
with a Rabi frequency Ω coupling the ground state to the Rydberg state, the presence of the Rydberg
atom prevents the other atoms from being excited. The sphere around a Rydberg atom in which ground
state atoms are blockaded meaning 𝑉 > ℏΩ has a radius

𝑅𝑏 =
6√︁
𝐶6/(ℏΩ) (2.4)

Thus, inside the blockade sphere only a single atom can be excited into the Rydberg state [5, 31]. In our
experiment the atomic cloud is confined to a volume smaller than the blockade sphere (see Figure 2.1
(a)) such that exactly one atom in the prepared atomic cloud can be excited in the Rydberg state.

2.1.1 Adiabatic Elimination

In the experiment the Rydberg excitation of the individual atoms is realized by combining two light
fields: A probe and a control field (see Figure 2.1 (c)) connecting the ground state |𝑔⟩ the intermediate
state |𝑒⟩ and the Rydberg state |𝑟⟩. The probe field drives the transition between |𝑔⟩ and |𝑒⟩ with a Rabi
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Chapter 2 Coherent Single-Photon-Matter Interaction using Rydberg Superatoms

frequency Ω𝑝 and a detuning Δ𝑝 of the light relative to the transition frequency. The control drives the
transition between |𝑒⟩ and |𝑟⟩ with the Rabi frequency Ω𝑐 and the detuning Δ𝑐 = Δ𝑝 − 𝛿, where 𝛿 is the
two-photon detuning (see Figure 2.1 (c)). The Hamiltonian describing the driven single three-level atom
is [32]

H =
ℏ

2


0 Ω𝑝 0
Ω𝑝 2Δ𝑝 Ω𝑐

0 Ω𝑐 2(Δ𝑝 − 𝛿)

 (2.5)

after the rotating wave approximation applied, neglecting fast oscillating terms for the atomic state. In
the Hamiltonian the diagonal terms describe the energies of each states while the off-diagonal terms
characterize the coupling between the terms. To obtain the populations one has to solve the system
dynamics under the influence of the Hamiltonian H . To approximate a two-level system one chooses Δ𝑝

to be large compared to the linewidth of the laser and 𝛿 to adiabatically eliminate the intermediate state
|𝑒⟩. In this case |𝑒⟩is barely populated and has a population that is changing much faster in time than the
populations of |𝑔⟩ and |𝑟⟩ [33]. The effective coupling of such a two level system is given by [32]

Ωeff,2𝛾 =
Ω𝑐Ω𝑝

2Δ𝑝

. (2.6)

Even though, the intermediate state has little population it still introduces an additional decay channel to
the Rydberg atom: The Rydberg |𝑟⟩ can be off-resonantly coupled to the intermediate state |𝑒⟩ and then
undergo a spontaneous decay with the rate Γ𝑒. The overall rate for such this process is given by [32]

Γ =
Ω

2
𝑐

4(Δ𝑝 − 𝛿)
2 Γ𝑒 (2.7)

Since the lifetime of the Rydberg state is very long, this effect is the dominant channel of spontaneous
decay especially if Rydberg and ground state are in the s-state. Using a two-photon transition with
a large Δ𝑝 has multiple advantages over a single photon excitation scheme: Firstly, the two-photon
excitation allows a broader range of Rydberg states: For example the ground and the Rydberg state can
both be s-states, which would be dipole-forbidden for a single photon excitation. Secondly, the Rabi
frequencies of the probe and the control can be freely chosen. This offers the possibility of combining a
single-photon probe beam with a strong control beam [32].

2.1.2 Collective Excitations

To further investigate the characteristics the atomic cloud inside the blockade sphere, let us consider two
atoms with driven by a field that is resonant with the ground-to-Rydberg transition. Figure 2.1 (b) shows
the energy level scheme of such a case. The state of the two-atom system can be described in a collective
basis. The collective ground state |𝑔𝑔⟩, with both atoms in the ground state is resonantly coupled to
the states |𝑔𝑟⟩ and |𝑟𝑔⟩ which contain exactly one Rydberg and one ground state atom with a coupling
strength Ω. The |𝑟𝑟⟩ state contains both atoms excited to the Rydberg state. Whether the |𝑟𝑟⟩ state can
be excited depends strongly on the distance 𝑅 between the two atoms. If their distance is smaller than
the blockade radius 𝑅𝑏 the |𝑟𝑟⟩ state cannot be excited (see Figure 2.1(b)). If both atoms are driven
by the external field at the same time, one cannot differentiate between the states |𝑔𝑟⟩ and |𝑟𝑔⟩. Thus,

5



Chapter 2 Coherent Single-Photon-Matter Interaction using Rydberg Superatoms

the field drives the transition between the ground |𝑔𝑔⟩ and the superposition state ( |𝑔𝑟⟩ + |𝑟𝑔⟩)/
√

2
with a coupling of

√
2Ω if the interatomic distance is smaller than the blockade radius. The increased

coupling is a direct consequence of the Rydberg blockade and does not apply is the system is not fully
blockaded [29, 30, 34].

2.2 Single-Photon Rabi Oscillations of Superatoms

We now want to expand the concept of enhanced coupling from the two-atom ensemble to 𝑁 atoms in
a cloud inside the blockade sphere. In this case one considers the coupling between the ground state
|𝐺⟩ =

��𝑔1, ..., 𝑔𝑁
〉

and a collective excited state [6]

|𝑊⟩ = (1/
√
𝑁)

𝑁∑︁
𝑗=1

𝑒
𝑖 ®𝑘 · ®𝑥 𝑗 | 𝑗⟩ (2.8)

where | 𝑗⟩ =
��𝑔1, ..., 𝑟 𝑗 , ..., 𝑔𝑁

〉
denotes the state with the j-th atom in the Rydberg state, ®𝑥 𝑗 being the

location of the j-th atom and ®𝑘 being the wavevector of the driving field. The coupling between the
|𝐺⟩ and |𝑊⟩ scales with

√
𝑁 since the light can couple to every single atom. This system of a cloud of

many atoms inside the blockade sphere and strongly and described by such a two-level system is called a
Rydberg superatom [5, 6].

Now we consider a system of a superatom consisting of 𝑁 atoms is driven by an external light field
consisting of a probe and a control beam. The weak probe field is used to control the excitation and
deexcitation of the atomic ensemble via absorption and stimulated emission of single photons. By
analyzing the transmitted (single-photon) probe field the dynamics of the superatom can be resolved.
The control field is used to increase the coupling between light field and the superatom. Thus, in the
following model one treats the system as if it was driven by the probe field with the amplitude 𝛼(𝑡),
which is related to the incoming photon rate via 𝑅in(𝑡) = |𝛼(𝑡) |2. The coupling between the |𝐺⟩ and
|𝑊⟩ is given by [6]

Ω𝐺𝑊 = 2
√
𝑁𝑔0

Ω𝑐

2Δ𝑝

𝛼(𝑡), (2.9)

where 𝑔0 describes the coupling between the atom and the light. Thus, one can control the coupling,
through the choice of the atomic transition (𝑔0), the number of atoms 𝑁 , the power of the control (Ω𝑐)
and the detuning of the probe Δ𝑝. All this is summarized in 𝜅 = 𝑁𝑔2

0
Ω

2
𝑐

4Δ2
𝑝

such that Ω𝐺𝑊 = 2
√
𝜅𝛼(𝑡).

The state |𝑊⟩ carries an imprint of the wavevector ®𝑘 of the exciting light in 𝑒𝑖 ®𝑘 · ®𝑥 𝑗 . These phase factors
cause the atomic ensemble to emit photons (with wavevector ®𝑘𝑒) via spontaneous decay into the exciting
mode such that ®𝑘 = ®𝑘𝑒, which is referred to as single photon superradiance. Just like the coupling
the rate of spontaneous emission in the forward direction is increased by

√
𝑁 [35]. In the context of

the two-photon excitation scheme, this means that the photons emitted due to spontaneous emission
propagate in the directions the probe and control beam. Due to this feature, this state is referred to as the
bright state.

The Hilbert space containing |𝐺⟩ and |𝑊⟩ also contains 𝑁 − 1 other states denoted as {|𝐷⟩}𝑁−1
𝑖=1 (see

Figure 2.2). These also carry a single Rydberg excitation, but are not coupled to the driving laser field

6
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(a) (b)

Figure 2.2: Rydberg superatom schemes. (a) Simplified level scheme of the Rydberg superatom consisting of 𝑁
atoms with the collective ground state |𝐺⟩, the collective bright state |𝑊⟩ and the dark states {|𝐷⟩}𝑁−1

𝑖=1 . The brown
arrow indicates the effective light field driving the system. Dark purple arrows indicate the spontaneous decay
of |𝑊⟩ and {|𝐷⟩}𝑁−1

𝑖=1 into |𝐺⟩ via the intermediate state with rate Γ. The yellow arrow indicates the dephasing
of a bright state into a superposition of dark states. (b) Interaction of the probe field with a Rydberg superatom
consisting of a cloud of ground state atoms (light purple) and a single Rydberg atom (dark purple) inside the
blockade sphere (yellow dashed). The brown arrows describe the interaction of the probe field with the atomic
cloud for the ensemble in the bright state (upper) and the dark states (lower).

due to different phase factors 𝑒𝑖 ®𝑘 · ®𝑥 𝑗 making them orthogonal to |𝑊⟩. As a cloud in a state {|𝐷⟩} is
blockaded the cloud becomes transparent for the driving field (see Figure 2.2). Therefore, the states
{|𝐷⟩}𝑁−1

𝑖=1 are referred to as dark states [6, 19]. Also, these states do not exhibit superradiance in the
direction of the driving field.

|𝑊⟩ and {|𝐷⟩}𝑁−1
𝑖=1 form an orthonormal basis and are thus in theory not coupled to each other.

However, there are processes that cause the transition from |𝑊⟩ to a superposition of {|𝐷⟩}𝑁−1
𝑖=1 . This

can be approximated as an irreversible decay with the rate 𝛾𝐷 . Due to multiple dephasing mechanisms
with a combined decay rate 𝛾𝐷 a collective bright state |𝑊⟩ transitions into a superposition of the dark
states {|𝐷⟩}𝑁−1

𝑖=1 over time preventing the laser from driving a transition back into the ground state |𝐺⟩
(these will be highlighted in section 2.3).

Both |𝑊⟩ and {|𝐷⟩}𝑁−1
𝑖=1 can decay into |𝐺⟩ with the rate Γ due to the control laser deexciting the

atom in the intermediate state from where it decays spontaneously [6]. For the previously introduced
model shown in Figure 2.2 one can formulate an effective Hamiltonian describing the light field driving
the atom as [6, 36]

𝐻eff (𝑡) = ℏ
√
𝜅(𝛼∗(𝑡)𝜎𝐺𝑊 + 𝛼(𝑡)𝜎†

𝐺𝑊
) + 𝛿/2(𝜎𝐷𝐷 + 𝜎𝑊𝑊 − 𝜎𝐺𝐺) (2.10)

with 𝜎𝛼𝛽 = |𝛼⟩ ⟨𝛽 | being the excitation/deexcitation of the superatom and 𝛼∗(𝑡)/𝛼(𝑡) describing the
coherent light field of the probe. Using this effective Hamiltonian one can formulate a master equation,

7
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which describes the change in the atomic density function in time as [6, 36]

𝜕𝑡 𝜌(𝑡) = − 𝑖
ℏ
[𝐻eff (𝑡), 𝜌(𝑡)] + 𝜅L[𝜎𝐺𝑊 ]𝜌(𝑡) + 𝛾𝐷L[𝜎𝐷𝑊 ]𝜌(𝑡) + Γ(L[𝜎𝐺𝐷] + L[𝜎𝐺𝑊 ])𝜌(𝑡)

(2.11)

where L[𝜎]𝜌 = 𝜎𝜌𝜎
† − (𝜎†

𝜎𝜌 + 𝜌𝜎
†
𝜎)/2 is the Lindblad superoperator. The master equation

contains all dynamics that were previously introduced (see Figure 2.2): The first term describes the
light field coherently driving the two-level-system of |𝐺⟩ and |𝑊⟩, causing a Rabi oscillations with a
frequency Ωeff =

√︁
4𝜅𝑅in between the two states.

The second term describes the enhanced spontaneous emission of the bright state into exciting mode
of the probe laser. The third term captures the decay of the collective bright state into a superposition of
the dark states with the rate 𝛾𝐷 . The fourth term captures the decay of a Rydberg state (independent
whether bright or dark state) into the collective ground state. Photons emitted in this process are radiated
into an arbitrary direction (and therefore not captured by the detectors in the experiment).

In order to make the Rydberg superatom a useful system for quantum experiments one aims to increase
the coherence time of the system. The decay of the Rabi oscillation amplitude characterizes the coherence
time of the superatom. Therefore, to obtain long coherences one has to increase the coupling 𝜅, while
keeping the dephasing 𝛾𝐷 and the rate of spontaneous emission Γ as low as possible.

When the incoming light field 𝛼(𝑡) and the initial state of the atomic ensemble is known, one can
numerically solve the master equation (in our case we use QuTip [37] to determine the population of the
|𝐷⟩, |𝑊⟩ and |𝐺⟩ - see Figure 2.3). The influence the light field has on the state of the superatom is
described in Equation 2.10, but not the impact of the superatom on the light field. With knowledge of
the superatom density matrix one can calculate the electric field transmitted through the superatom as
the sum of the incoming field 𝛼(𝑡) and the field emitted/absorbed by the atomic ensemble [6]

𝐸 (𝑡) = 𝛼(𝑡) − 𝑖
√
𝜅𝜎𝐺𝑊 (𝑡) (2.12)

From Equation 2.12 one can deduce the expected outgoing photon rate at the location of the superatoms
as [6]

𝑅out = |𝐸 (𝑡) |2 = |𝛼(𝑡) |2 + 𝜅⟨𝜎†
𝐺𝑊

(𝑡)𝜎𝐺𝑊 (𝑡)⟩ − 𝑖
√
𝜅 [𝛼∗(𝑡)⟨𝜎𝐺𝑊 (𝑡)⟩ − 𝛼(𝑡)⟨𝜎†

𝐺𝑊
(𝑡)⟩] . (2.13)

Therefore, with the knowledge of the incoming field 𝛼(𝑡) one can calculate on the outgoing field that
only depends on 𝜅, 𝛾𝐷 and Γ [6]. Figure 2.3 shows the population and the photon rate with realistic
experimental parameters calculated using QuTip.

2.3 Dephasing Mechanisms of Rydberg Superatoms

As one can see in Figure 2.3 the dark states {|𝐷⟩}𝑁−1
𝑖=1 are expected to play a significant role when

performing single-photon Rabi oscillations with the superatom. In this section three effects leading to
the dephasing from |𝑊⟩ to {|𝐷⟩}𝑁−1

𝑖=1 will be introduced: thermal motion of the atoms [13], differential
light shifts of the atoms due to different trapping potentials for ground and Rydberg states [15] and the
energy shifts due an inhomogeneous density in the atom cloud [14]. A more detailed description of
these mechanisms can be found in [16, 17].
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Figure 2.3: Superatom state population and photon rate for realistic experimental parameters. (Upper) Population
of the states |𝐺⟩, |𝑊⟩ and {|𝐷⟩}𝑁−1

𝑖=1 over time. (Lower) Difference between the incoming 𝑅in and the outgoing
light field 𝑅in. The calculation was done using QuTip mesolve with the system initially prepared at |𝐺⟩. For
the calculation 𝜅 = 0.31 MHz, Γ = 0.42 1/µs, 𝛾𝐷 = 0.91 1/µs and a time-constant probe photon field with
𝑅𝑖𝑛 = 20 1/µs was used.

Firstly, the thermal motion of the constituent atoms lead to dephasing of the bright state |𝑊⟩ into
the dark states {|𝐷⟩}𝑁−1

𝑖=1 . This is due to the atoms changing their position affecting the phase terms
𝑒
𝑖 ®𝑘 ®𝑥 𝑗 of the state with the 𝑗-th atom excited. If the overlap between the collective state of the atoms

and the (ideal) bright state |𝑊⟩ is reducing this means that the coupling between the light field and the
superatom decreases. Assuming that the velocity distribution of the atomic ensemble in the direction of
the wavevector ®𝑘 is a Boltzmann distribution, one can derive that the overlap between the initial state
|𝜓(0)⟩ = |𝑊⟩ and the state at the time 𝑡 is given by [17]

| ⟨𝜓(0) |𝜓(𝑡)⟩ |2 = exp
(
−𝑡2/𝜏2

thermal

)
with 𝜏thermal =

√︄
𝑚

𝑘
2
𝑘𝐵𝑇

(2.14)

where 𝑘 is the length of the wavevector, 𝑚 is the mass of the atoms, 𝑘𝐵 is the Boltzmann constant and 𝑇
denotes the temperature of the atomic ensemble. For typical parameters in the experiment of 𝑇 = 3 µK,
a mass of 𝑚𝑅𝑏87 = 1.443 × 10−25 kg[38] and 𝑘 = 2𝜋 · (1/480 nm − 1/780 nm) = 8.01 × 105 1/m this
leads to 𝜏thermal ≈ 11.7 µs. Since this effect leads to a dephasing of the state |𝑊⟩ into the states {|𝐷⟩}𝑁−1

𝑖=1
this process contributes to the dephasing characterized by 𝛾𝐷 .

Secondly, one has to take into account differential light shifts of the ground states |𝑔⟩ and the Rydberg
states |𝑟⟩ of the individual atoms. In the experiment the atoms are trapped using the optical dipole force
using a focused laser beam (red-detuned to the 𝐷2-line). This trapping method utilizes the AC Stark
effect shifting the energy levels of the ground state atoms, which attracts the atoms to the highest intensity

9
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of the beam. The shift of the energy level of the ground state is proportional to the intensity 𝐼 (®𝑥) [16, 39]

Δ𝐸𝑔 = −
𝛼𝑔

4
𝐼 (®𝑥) (2.15)

where 𝛼𝑔 is the ground-state polarizability. The value of 𝛼𝑔 depends on the detuning from the 𝐷1-line
of Rb-87 and is specific for the ground state of Rubidium. The sign of 𝛼𝑔 determines whether the atoms
are attracted or repulsed by the trapping beam. Each state of Rubidium has a different polarizability and
therefore a different trapping potential. In the case of the Rydberg states the potential also depends on the
intensity profile of the trapping light, since one has to take into account that the valence electron samples
the potential around the position of the atomic core (see [16]). If one neglects this effect, approximating
the trapping potential over the extent of the electrons wavefunction one obtains [16]

Δ𝐸𝑟 = −
(
𝐷

2
𝑎𝑟

16ℏΔ𝑎𝑟

−
𝛼 𝑓

4

)
𝐼 (®𝑥) (2.16)

where the trapping light is detuned by Δ𝑎𝑟 to the transition from |𝑟⟩ to |𝑎⟩ characterized by the dipole
matrix element 𝐷𝑎𝑟 and 𝛼 𝑓 is the free-electron polarizability.

Comparing Equation 2.15 and Equation 2.16 one sees that if the 𝛼𝑔 ≠
𝐷

2
𝑎𝑟

4ℏΔ𝑎𝑟
+ 𝛼 𝑓 , this means that

Δ𝐸𝑔 −Δ𝐸𝑟 ≠ 0. Therefore, the atom excitation energy depends on their position in the optical trap. This
can also be understood as a position-dependent detuning of the atoms when driving the system with a
monochromatic light source. If the superatom is initially prepared in |𝜓(0)⟩ = |𝑊⟩ then after the time 𝑡
it is in the state [39]

|𝜓(𝑡)⟩ = (1/
√
𝑁)

𝑁∑︁
𝑗=1

𝑒
𝑖 ( ®𝑘 · ®𝑥 𝑗+𝐻𝑔𝑟 ( ®𝑥 𝑗 )/ℏ𝑡 ) | 𝑗⟩ (2.17)

where 𝐻𝑔𝑟 ( ®𝑥 𝑗) is the two-level Hamiltonian characterizing the interaction between the driving field and
the j-th atom. The position-dependence of the Hamiltonians causes the phases of the states in the sum, to
evolve with different frequencies 𝜔 𝑗 · ℏ | 𝑗⟩ = 𝐻𝑔𝑟 ( ®𝑥 𝑗) | 𝑗⟩ leading to a dephasing of the collective bright
state |𝑊⟩ into the dark states.

To give a rough estimate of the effect we look at a simplified case: We assume that an atomic cloud is
trapped in the 𝑦-direction, which is the probe direction, by a Gaussian beam with a waste 𝑤 and a peak
intensity 𝐼0 with the intensity profile

𝐼 (𝑦) = 𝐼0𝑒
− 𝑦

2

𝑤
2 . (2.18)

Since the trapping potential for the ground and Rydberg state atoms (𝑈𝑔 (𝑦) and 𝑈𝑟 (𝑦)) is directly
proportional to the intensity profile and assuming that the atoms are only sitting around the potential
minimum, one can approximate the potential using a Taylor expansion

𝑈𝑔/𝑟 (𝑦) = −𝛼g/r4 · 𝐼0𝑒
− 𝑦

2

𝑤
2 = 𝛼g/r · 𝐼0

(
1 − 𝑦

2

𝑤
2 + O(𝑦4)

)
, (2.19)

10
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where 𝛼𝑟 =
𝐷

2
𝑎𝑟

4ℏΔ𝑎𝑟
− 𝛼 𝑓 is the combined Rydberg polarizability. Using the trapping potential for the

ground state one can deduct the normalized atomic density of the form [40]

𝑛(𝑦) = 𝑒
−

𝑈𝑔 (𝑦)
𝑘𝐵𝑇∫

𝑒
−

𝑈𝑔 (𝑦)
𝑘𝐵𝑇

(2.20)

where 𝑘𝐵 denotes the Boltzmann constant and 𝑇 the temperature of the atomic ensemble. The differential
light shift is the difference between the ground state and the Rydberg state trapping potential

Δdl(𝑦) = 𝑈𝑟 (𝑦) −𝑈𝑔 (𝑦) = (𝛼r − 𝛼g)/4 · 𝐼0(1 − 𝑦
2

𝑤
2 ). (2.21)

With Equation 2.21 we can calculate the overlap of the bright state wave function with the superatom
wavefunction after the time 𝑡

| ⟨𝑊 |𝜓(𝑡)⟩ |2 = | (1/
√
𝑁)

𝑁∑︁
𝑗=1

𝑒
−𝑖𝑘𝑦 ·𝑦𝑖 ⟨ 𝑗 | (1/

√
𝑁)

𝑁∑︁
𝑗=1

𝑒
𝑖 (𝑘𝑦 ·𝑦𝑖+Δdl (𝑦𝑖 )/ℏ𝑡 ) | 𝑗⟩ |2 = | (1/𝑁)

𝑁∑︁
𝑗=1

𝑒
𝑖Δdl (𝑦𝑖 )/ℏ·𝑡 |2

(2.22)

We now replace the sum by an integral using
∑

𝑖 𝑓 (𝑦𝑖) → 𝑁
∫

d𝑦𝑛(𝑦) 𝑓 (𝑦) under the condition that the
number of atoms is large [41] leading to

| ⟨𝑊 |𝜓(𝑡)⟩ |2 =

�������
∫

d𝑦𝑒−
𝑈𝑔 (𝑦)
𝑘𝐵𝑇 𝑒

𝑖Δdl (𝑦𝑖 )/ℏ𝑡∫
𝑒
−𝑈 (𝑦)

𝑘𝐵𝑇

�������
2

(2.23)

=

���������𝑒
𝑖 (𝛼r−𝛼g )/4ℏ·𝐼0𝑡

∫
d𝑦𝑒−(

𝛼g
𝑘𝐵𝑇

+𝑖 (𝛼r−𝛼g )/ℏ·𝑡 )
𝑦

2 ·𝐼0
4𝑤2

∫
d𝑦𝑒

−
𝑦

2 ·𝐼0𝛼g
4𝑘𝐵𝑇𝑤

2

���������
2

(2.24)

=
1

1 − ( 𝛼𝑟

𝛼𝑟
− 1)2

(
𝑡 ·𝑘𝐵𝑇

ℏ

)2 . (2.25)

This result corresponds to a first order Taylor expansion of a Gaussian decay of the form 𝑒𝑥𝑝(−𝑡2/𝜏dl)
with a time constant 𝜏dl = ( 𝛼𝑟

𝛼𝑟
− 1) 𝑘𝐵𝑇

ℏ
. In our model this effect is approximated assuming that it

contributes to the overall dephasing rate 𝛾𝐷 .
Thirdly, one has to consider that the excitation energy of the Rydberg atom is shifted by the presence

of other ground state atoms nearby. Rydberg atoms can form molecules with ground state atoms, if the
valence electron scatters with a ground state atom inside the Rydberg electron wave function [42]. In
this way dimers, trimers etc. can be formed consisting of a Rydberg atom and one, two etc. ground
state atoms. If the atomic ensemble is very dense and the Rydberg atom is in a highly excited state the
individual molecular lines are not resolved but instead a shift in the Rydberg line is observed [42]. In
first order one can approximate the shift of the atomic line due to the density of the atomic cloud 𝜌𝑛 (®𝑥)
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as [42]:

Δ𝐸𝜌 =
2𝜋ℏ2

𝑎

𝑚𝑒

∫
d®𝑥 |Ψ𝑒 (®𝑥) |

2
𝜌𝑛 (®𝑥)︸                    ︷︷                    ︸

𝜌𝑛

=
2𝜋ℏ2

𝑎

𝑚𝑒

𝜌𝑛 (2.26)

where Ψ𝑒 (®𝑥) denotes the wavefunction of the Rydberg electron, 𝑎 is the scattering length, 𝑚𝑒 denotes the
electron mass and 𝜌𝑛 (®𝑥) is the density of ground state atoms in the atomic ensemble. The atomic density
weighted by the electrons wavefunction 𝜌𝑛 (®𝑥) differs depending on the position of the atom in the cloud
due to the inhomogeneous density of the atomic cloud. Similarly to the differential light shift this causes
the detuning of driving field relative to the ground-to-Rydberg state transition to differ depending on the
position of the Rydberg atom. Therefore, one expects steep density gradients to give rise to a similar
dephasing behavior of |𝑊⟩ as for the differential light shift. section A.1 in the appendix describes the
experimental confirmation, that this effect contributes significantly to the overall dephasing 𝛾𝐷 .

To reduce the differential light shifts and thermal motion a magic wavelength lattice trap had been
introduced to trap the atomic cloud in the vacuum chamber (a detailed description is given in [16, 17]).
In that case the wavelength of the trapping beams is chosen, such that the light shifts of the ground
and of the Rydberg state become equal. Under these circumstances the differential light shift vanishes.
With the trapping light a one-dimensional optical lattice in the direction of the probe and the control
beam (y-direction) was realized. The trap limits the thermal motion of the atoms in the direction of the
wavevector ®𝑘 to one lattice site, leading to a reduction in the thermal dephasing. However, this came at
the cost of increasing the atomic density in each lattice site. The confinement leads to steep density
profile increasing the dephasing due to inhomogeneous density. Overall with the introduction of the
magic trap no significant improvement of the coherence time (or reduction of 𝛾𝐷) in the superatom could
be achieved.

2.4 Rabi Oscillations with a Noisy Driving Field

In the model of Equation 2.11 the various effects leading to a dephasing are solely captured in 𝛾𝐷 . In
previous works ([6, 36]) this 𝛾𝐷 was also used to capture the dephasing due to fluctuations in the driving
lasers. This thesis investigates the impact of laser noise on the loss of coherence in more detail with the
goal of separating this effect from the other dephasing effects.

Laser noise can either be described as random fluctuations in the laser phase or fluctuations of the
laser frequency. This feature is typically characterized using the phase or frequency noise power spectral
density 𝑆Φ( 𝑓 )/𝑆𝜈 ( 𝑓 ), where 𝑓 denotes the Fourier frequencies of the noise components. They are
connected via [43]

𝑆𝜈 ( 𝑓 ) = 𝑓
2
𝑆Φ( 𝑓 ) (2.27)

and therefore can be directly translated into each other.
To consider the impact of frequency noise, the superatom is modeled as a two level system with

the states |𝑊⟩ =

(
1
0

)
and |𝐺⟩ =

(
0
1

)
. The two-level system is driven by a laser field with the Rabi

frequency Ω
′
eff (𝑡) = Ωeff · 𝑒−𝑖Φ(𝑡 ) , where Φ(𝑡) denotes fluctuations in the phase due to the phase noise
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and a detuning 𝛿 [44]. In that case the effective Hamiltonian looks like this:

𝐻 (𝑡) = ℏ

[
𝛿/2 Ωeff (𝑡)/2

Ω
∗
eff (𝑡)/2 −𝛿/2

]
= ℏ

(
𝜎𝑧

𝛿

2
+
Ωeff

2

[
0 𝑒

𝑖Φ(𝑡 )

𝑒
−𝑖Φ(𝑡 ) 0

])
, (2.28)

where 𝜎𝑥 , 𝜎𝑦 and 𝜎𝑧 denote the Pauli matrices. If one applies the unitary transformation

𝑈 = 𝑒
−𝑖 Φ(𝑡 )

2 𝜎𝑧 =

[
𝑒
−𝑖 Φ(𝑡 )

2 0
0 𝑒

𝑖
Φ(𝑡 )

2

]
(2.29)

with ¤𝑈 = 𝑒
−𝑖 Φ(𝑡 )

2 𝜎𝑧 ·
(
−𝑖

¤Φ(𝑡)𝜎𝑧

2

)
(2.30)

using the transformation rule 𝐻 → 𝑈𝐻𝑈
† + 𝑖ℏ ¤𝑈𝑈†

=: �̆� [39, 45] one obtains

�̆� = 𝑒
−𝑖 Φ(𝑡 )

2 𝜎𝑧ℏ

(
𝜎𝑧

𝛿

2
+
Ωeff

2

[
0 𝑒

𝑖Φ(𝑡 )

𝑒
−𝑖Φ(𝑡 ) 0

])
𝑒
𝑖
Φ(𝑡 )

2 𝜎𝑧︸                                                               ︷︷                                                               ︸
𝑈𝐻𝑈

†

+ ℏ ¤Φ(𝑡)
𝜎𝑧

2︸    ︷︷    ︸
𝑖ℏ ¤𝑈𝑈

†

(2.31)

= ℏ𝜎𝑧

𝛿

2
+ ℏ

Ωeff
2
𝜎𝑥 + ℏ ¤Φ(𝑡)

𝜎𝑧

2
(2.32)

= ℏ

[
(𝛿 + ¤𝜙(𝑡))/2 Ωeff/2

Ωeff/2 −(𝛿 + ¤𝜙(𝑡))/2

]
(2.33)

Comparing Equation 2.33 and Equation 2.28 one sees that a fluctuation in the phase affecting the driving
field can also be seen as a fluctuation in the frequency affecting the detuning of the light field driving the
system.

The fluctuations in the driving field frequency distorts the sinusoidal oscillation of the ground and
Rydberg state population. If one averages over multiple realizations of this system this appears as a
dephasing mechanism leading to a reduction in the oscillation amplitudes. In the following this loss
of coherence shall be modeled. For that we start with the Von-Neumann-equation considering only
the two-level-system and neglecting other dephasing and decay terms and assume that the frequency
fluctuation is white noise. The Hamiltonian is written as a superposition of the Pauli matrices 𝜎𝑥 and
𝜎𝑧 [45]:

𝜕𝑡 𝜌(𝑡) = − 𝑖
ℏ
[ℏ𝜎𝑧

𝛿

2
+ ℏ

Ωeff
2
𝜎𝑥︸               ︷︷               ︸

𝐻eff

+ ℏ
¤Φ(𝑡)
2
𝜎𝑧︸    ︷︷    ︸

𝐻𝜈 (𝑡 )

, 𝜌(𝑡)] (2.34)

To simplify the following calculation we look at the case where the two-photon detuning is zero
and assume that the frequency fluctuations are significantly faster than the dynamics of the effective
Hamiltonian driving the system. Integrating the Von-Neumann-equation from 𝑡 = 0 and using the
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linearity of the commutator leads to:

𝜌(𝑡) = 𝜌(0) − 𝑖
(∫ 𝑡

0
d𝑡′

Ωeff
2

[𝜎𝑥 , 𝜌(𝑡
′)] +

∫ 𝑡

0
d𝑡′

¤Φ(𝑡′)
2

[𝜎𝑧 , 𝜌(𝑡
′)]

)
. (2.35)

Plugging this relationship into the density matrix in the second integral leads to five terms:

𝜌(𝑡) = 𝜌(0)︸︷︷︸
(𝐼 )

−𝑖
©«
∫ 𝑡

0
d𝑡′

Ωeff
2

[𝜎𝑥 , 𝜌(𝑡
′)]︸                       ︷︷                       ︸

(𝐼 𝐼 )

+
∫ 𝑡

0
d𝑡′

¤Φ(𝑡)
2

[𝜎𝑧 , 𝜌(0)]︸                       ︷︷                       ︸
(𝐼 𝐼 𝐼 )

ª®®®®®¬
−

©«
∫ 𝑡

0
d𝑡′

∫ 𝑡
′

0
d𝑡′′

¤Φ(𝑡′)Ωeff
4

[𝜎𝑧 , [𝜎𝑥 , 𝜌(𝑡
′′)]]︸                                                    ︷︷                                                    ︸

(𝐼𝑉 )

+
∫ 𝑡

0
d𝑡′

∫ 𝑡
′

0
d𝑡′′

¤Φ(𝑡′) ¤Φ′′(𝑡)
4

[𝜎𝑧 , [𝜎𝑧 , 𝜌(𝑡
′′)]]︸                                                      ︷︷                                                      ︸

(𝑉 )

ª®®®®®¬
.

(2.36)

Term (𝐼) describes the starting value of the density matrix at 𝑡 = 0 and term (𝐼 𝐼) describes the time
evolution of the density matrix in the ideal case. Assuming that the noise fluctuates very fast around the
carrier leads to

∫
d𝑡′ ¤Φ(𝑡′) = 0 and the term (𝐼 𝐼 𝐼) vanishes. Term (𝐼𝑉) averages out if the system is

realized multiple times (e.g. see [46]). To calculate (V) we use that white noise is uncorrelated. Then
one can use that ⟨ ¤Φ(𝑡) ¤Φ(𝑡 + 𝜏)⟩ = 𝛼W𝛿(𝜏), where 𝛿 denotes the Delta function and 𝛼W scales with the
noise power [47]. With these approximations one obtains the following form for an averaged density
matrix

𝜌(𝑡) = 𝜌(0) − 𝑖
©«
∫ 𝑡

0
d𝑡′

Ωeff
2

[𝜎𝑥 , 𝜌(𝑡
′)] +

∫ 𝑡

0
d𝑡′
𝛼W
4

[𝜎𝑧 , [𝜎𝑧 , 𝜌(𝑡
′′)]]︸                ︷︷                ︸

L(𝜎𝑧 )𝜌(𝑡
′ )

ª®®®®¬
(2.37)

When differentiating this form one finally obtains a modified version of the initial equation with

𝜕𝑡 𝜌(𝑡) = − 𝑖
ℏ

[
𝐻eff , 𝜌(𝑡)

]
+
𝛾𝜈

2
L(𝜎𝑧)𝜌(𝑡), (2.38)

where we choose 𝛾𝜈 = 𝛼𝑊/2. This relation was derived under the assumption of a driven two level
system without a dephasing into of the dark state |𝐷⟩ with rate 𝛾𝐷 or the decay of the Rydberg state
via spontaneous emission. If these are taken into account the calculation becomes significantly more
complicated. Assuming that the frequency noise impact on the Master equation is not correlated to the
dephasing 𝛾𝐷 and or the spontaneous decay channels with rates 𝜅 or Γ all effects are combined into one
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Lindblad master equation describing the development of the averaged density matrix as:

𝜕𝑡 𝜌(𝑡) = − 𝑖
ℏ
[𝐻eff (𝑡), 𝜌(𝑡)] + (𝜅 + Γ)L[𝜎𝐺𝑊 ]𝜌(𝑡)

+ 𝛾𝐷L[𝜎𝐷𝑊 ]𝜌(𝑡) + ΓL[𝜎𝐺𝐷]𝜌(𝑡) + 𝛾𝜈L(𝜎𝑊𝑊 )𝜌(𝑡), (2.39)

where the zero-energy was chosen to be at the energy of the ground state |𝐺⟩. This allows to replace
𝛾𝜈
2 L(𝜎𝑊𝑊 − 𝜎𝐺𝐺) by 𝛾𝜈L(𝜎𝑊𝑊 ), which is more convenient here.

To derive the term 𝛾𝜈L(𝜎𝑊𝑊 ) the frequency noise of the driving field was approximated by white
noise, which allowed to neglect multiple terms in Equation 2.36. However, the frequency noise spectra
of the excitation lasers are not necessarily flat, but have distinct noise features. Therefore, the Master
equation in Equation 2.39 is an approximation of the experimental measurement and does not resemble
the dynamics of the superatom exactly.
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CHAPTER 3

Experimental Setup Creating Rydberg
Superatoms

As discussed in Chapter 2 the coherent interaction between few photons and the Rydberg superatom is
limited by different dephasing mechanisms. Our experimental apparatus allows us to investigate these
dephasing mechanisms.

In this section, I outline the experimental setup and the methods to capture and prepare a cloud of
ultracold Rubidium-87 atoms in the RQO experiment. Then I will describe the experimental realization
of Rydberg superatoms and the techniques used to investigate them. This includes a description frequency
stabilization scheme used for the lasers driving the excitation of the Rydberg states.

3.1 Experimental Apparatus and Atom Preparation Cycle

The RQO experiment consists of a glass cell connected to a vacuum chamber with an ion pump to
preserve a vacuum pressure of ∼1 × 10−10 mbar. Using current-controlled dispensers a background gas
of Rubidium-87 is created in the chamber. The atoms are loaded and prepared from this background gas
using the light beams shown in Figure 3.1.

In the first step, a cloud of Rubidium atoms is trapped and cooled from the background gas by using a
magneto-optical trap (MOT) for ∼1.3 s. The MOT is realized using 6 circularly polarized laser beams
driving the 𝐹 = 2 −→ 𝐹

′
= 3 transition (the beams in the z-direction are not shown in the sketch) and

three sets of coils aligned to the axes x, y and z in the anti-Helmholtz configuration. Each MOT-beam is
overlapped with a repumper-beam driving the 𝐹 = 1 −→ 𝐹

′
= 2 transition. Due to imperfections in the

cooling cycle a part of the atoms decays in the 𝐹 = 1-state, which cannot be excited by the MOT beams.
To increase the atomic density the atoms are transferred into an optical dipole trap [49]. Figure 3.1

shows the two crossing beams (ODT) with a wavelength of 1064 nm a power of ∼12 W and an angle of
31.4°. Both beams have opposite linear polarization to prevent interference and thus the formation of an
optical lattice. To transfer the atoms from the MOT to the ODT the magnetic fields are ramped up for
100 ms and the detuning MOT cooler beams and the repumper beams is reduced to compress the cloud.
Simultaneously the power of the MOT and repumper is linearly ramped down such that the atoms are
then trapped by the optical dipole trap.

To reduce the temperature of the atomic cloud the power of the ODT beams is reduced, lowering
the trap depth and cooling the atomic ensemble via evaporative cooling [50]. This is combined with
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Figure 3.1: A sketch of the vacuum chamber (light blue) with the optical beams used in the RQO experiment. The
beams depicted here are from the magneto-optical trap (MOT), the optical lattice used for Raman-sideband-cooling,
the optical dipole trap (ODT) and the dimple beam. On the main experimental axis (y-direction) the beam of
the repumper, the optical pumping beam (both red) are overlapped with the control beam (blue) while the probe
counterpropagates these beams. Around the glass cell magnetic coils are installed to compensate stray magnetic
fields and apply well-defined magnetic bias fields in a given direction (for MOT, optical pumping etc.). Not shown
in this sketch are the beams going in the z-direction (MOT and polarizer). Neither are the beams for vertical and
horizontal absorption imaging (x- and z direction) Adapted from [48].

simultaneous Raman-sideband-cooling (RSC) to further reduction of temperature: An optical lattice
with three beams is realized (see RSC beams in Figure 3.1) and a magnetic field is applied such that
Zeeman splitting corresponds to the splitting of the vibrational states in the lattice. By using an additional
“polarizer” beam driving the 𝐹 = 1 −→ 𝐹

′
= 0 transition the vibrational state is reduced, cooling the

atoms beyond the Doppler-limit. In combination with the evaporative cooling in the optical dipole trap
the atoms can be cooled to temperatures as low as ∼3 µK (a more detailed description can be found
in [48]).

To create a small atomic ensemble that can be fully blockaded (to later create Rydberg superatoms),
the crossed dipole trap is overlapped with a dimple trap consisting of a single Gaussian beam. The
direction of this “dimple” is perpendicular to the long axis of the atomic cloud in the crossed trap (see
Figure 3.1). Then, by ramping up the power of the dimple beam and simultaneously ramping down the
power of the beams of the optical dipole trap the atoms are transferred into the dimple trap. Atoms that
are not in the overlapping region escape due to their kinetic energy such there are no atoms around the
trapped cloud. Afterward, the dimple is ramped back down to half of the initial power resulting in a trap
depth of ∼250 µK, while the ODT is turned back on to confine the atomic cloud in the y-direction (the
trap depth is approximately 160 µK).

As a last step in the preparation cycle, the atoms are transferred into
��5𝑆1/2, 𝐹 = 2, 𝑚𝐹 = 2

〉
by

applying the optical pumping beam that is resonant with the 𝐹 = 2 −→ 𝐹
′
= 2 and 𝜎+ polarized.
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To define a quantization axis a magnetic bias field along the y-direction is applied. Additionally, the
“repumper” beam is used to depopulate the 𝐹 = 1 state. Finally, the atoms are fully prepared, cooled and
confined enough to conduct superatom experiments.

3.2 Measuring and Evaluating Rabi Oscillations of Rydberg
Superatoms

After the preparation the atomic cloud is are probed in 1000 consecutive experiments each lasting
100 µs. Afterward, the trapping beams are turned off releasing the trapped atoms and 1000 reference
measurements without an atomic cloud are conducted.

In each experiment the atomic cloud is illuminated with the light of the counterpropagating red probe
laser (780 nm) and the blue control laser (480 nm) (see Figure 3.1). The single-photon detuning of the
probe beam is Δ𝑝 = 100 MHz and the two-photon detuning is chosen to be 𝛿 = 0 MHz such that the
condition for adiabatic elimination is fulfilled. The control laser has a Rabi frequency of∼Ω𝑐 = 12 MHz,
while the light coming from the Probe laser is strongly attenuated typically to a rate of 𝑅in∼(10 − 30)
photons per µs.

To perform a measurement, the optical dipole trap is turned off to reduce the differential light shift
while the atoms are illuminated with the control light. With an Acusto-optic modulator a Tuckey-pulse
with a length of ∼8 µs of probe photons is created to illuminate the atoms (see gray trace Figure 3.2).
Ideally, one would like to use a square pulse to drive the system with a single Rabi frequency. However,
since sharp edges in the time domain correspond to a broadening in the linewidth of the probe laser in
the frequency domain, a Tuckey-pulse with more rounded edges was chosen. The transmitted light is
coupled into an optical fiber and the measured with Single-Photon-Counting-Modules (SPCMs), with
the temporal resolution set to ∼20 ns (color trace in Figure 3.2). After that the optical dipole trap is
turned back on to counteract a dissipation of the atomic cloud in the x-direction.

After 1000 of these experiments the dimple and the optical dipole trap are turned off for 15 ms causing
the atomic cloud to fully dissipate due to gravitation and the kinetic energy of the atoms. Without atoms
in the trap 1000 reference measurements are done with the same procedure measuring the transmission
of the probe laser are done.

Normally, these experiments are performed for multiple probe photon rates 𝑅in each resulting in a
different trace due to the different Rabi frequency Ωeff = 2

√︁
𝜅𝑅in. The procedure of preparing the atoms

and then performing the experiment measuring the probe transmission is then repeated for each of the
probe laser powers separately. For typical measurements, like presented in Figure 3.2, one averages
across of 3500 ∗ 1000 to 5000 ∗ 1000 experiments.

After averaging over the experiment and reference measurement one obtains the plots shown in
Figure 3.2. The Rabi oscillations are fully characterized by the rates 𝜅, Γ, 𝛾𝐷 and 𝛾𝜈 from Equation 2.39.
Thus, one can fit a function of the form

𝑅out = |𝐸 (𝑡) |2 = 𝑅in(𝑡) + 𝜅⟨𝜎
†
𝐺𝑊

(𝑡)𝜎𝐺𝑊 (𝑡)⟩ − 𝑖
√
𝜅

[√︁
𝑅in(𝑡)⟨𝜎𝐺𝑊 (𝑡)⟩ −

√︁
𝑅in(𝑡)⟨𝜎

†
𝐺𝑊

(𝑡)⟩
]
. (3.1)

where the measured reference field pulses are inserted as 𝑅in(𝑡), to the measured oscillation traces. The
time-dependent correlation terms 𝜎†

𝐺𝑊
(𝑡) and 𝜎𝐺𝑊 (𝑡) are calculated from the Lindblad Master equation

using QuTip [37]. To increase the accuracy of the fit, the measurements with different probe photon
rates are fitted with the same 𝜅, Γ and 𝛾𝐷 since these rates are expected to be independent of the input
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1 2 3

(a) (b)

Figure 3.2: Two-photon excitation scheme and example of a Rabi oscillation measurement performed in the RQO
experiment for four different probe photon rates 𝑅in. (a) Simplified level-scheme of Rubidium-87 used in the
experiment. Here only the hyperfine levels with a positive magnetic quantum number are shown. The transition
driven by the 𝜎+-poloarized probe is depicted in red and the transition driven by the 𝜎−-poloarized control is
depicted in light blue. The detuning of the probe light is denoted between the transition

��5𝑆1/2
〉
−→

��5𝑃3/2
〉

and
the laser frequency is denoted as Δ𝑝. (b) The transmitted probe light is measured for the case with (colored)
and without (gray) a superatom in the probe beam path. The different Rabi frequencies are calculated from the
height of the reference pulses using Ω = 2

√︁
𝜅𝑅in. To each of the recorded traces a function was fitted of the form

of Equation 3.1. The fit has the following parameters 𝜅 = 0.31(1) MHz, Γ = 0.42(1) 1/µs, 𝛾𝐷 = 0.91(4) 1/µs,
𝛾𝜈1 = 0.78(9) 1/µs, 𝛾𝜈2 = 0.89(8) 1/µs, 𝛾𝜈3 = 1.27(8) 1/µs and 𝛾𝜈4 = 2.13(9) 1/µs. 𝛾𝜈1 corresponds to the
case with the lowest input photon-rate 𝑅in and 𝛾𝜈4 corresponds to the case with the highest input photon rate.

rate of photons 𝑅𝑖𝑛. Since it is expected that the dephasing 𝛾𝜈 induced by the frequency noise of the
laser depends on the characteristics of the driving field (see Equation 2.37). Each trace is fitted with an
individual value for 𝛾𝜈 .

The fitting parameters of the measurement in Figure 3.2 suggest that the frequency noise induced
dephasing has a rate between 0.78(9) 1/µs and 2.13(9) 1/µs depending on 𝑅in. The fit indicates that
frequency noise of the excitation lasers contributes significantly to the dephasing of Rabi oscillations.
However, it could also be that another unknown power-dependent effect is measured here. This will be
quantitatively investigated in Chapter 5.

3.3 Two-Photon Excitation Laser System

In this section, the setup of the probe and the control laser is described in detail. The optical and
electronic setup determines the frequency noise characteristics of both lasers.

The probe laser is an external cavity diode laser operating at 780 nm with an optical isolator to prevent
back-reflections. The control laser also has an external cavity diode laser operating at 960 nm, which is
then amplified with a tapered amplifier. Afterward, the light is frequency-doubled using second harmonic
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Figure 3.3: Simplified sketch of probe or control laser fast stabilization loop. The boxes indicate the controller
(Fast Analog Linewidth Control), the actuator (Laser) and the sensor (Frequency reference measurement) with the
transfer function of the respective component denoted by 𝑇 (𝑠). Arrows indicate the electrical (dark purple) or
optical (brown) signals sent through the different components. The trace of each signal is labeled with small letters
(𝑒(𝑡), 𝑔(𝑡), 𝑐(𝑡), 𝑙 (𝑡) and 𝑧(𝑡)). The error signal 𝑒(𝑡) is calculated from the difference between the set point 𝑅
(typically 0) and the sensor output 𝑔(𝑡). In this sketch, the only noise source is considered the intrinsic frequency
noise of the laser 𝑛(𝑡), which is added to the output signal of the resulting from the modulation of the laser current
modulation.

generation transforming wavelength to 480 nm.
To suppress changes in the laser frequency, the probe and the control laser are frequency stabilized to

a reference, respectively. A feedback loop minimizes the difference between the laser frequency and
the reference frequency. The changes in the difference range from slow drifts over hours or days to fast
changes on the time-scales of the experiment. Figure 3.3 shows the scheme for frequency stabilization
against fast changes in the frequency, which are relevant for the frequency noise induced dephasing 𝛾𝐷 .
The light coming out of the laser is compared to a frequency reference. In the case of the control laser
the Pound-Drever-Hall method is used stabilizing the laser to an ultra-low expansion cavity [51]. The
probe is stabilized by using the beat note with a stabilized master laser [52]. The reference measurement
creates an error signal which increases linearly with a deviation in the laser frequency from the reference
frequency.

The error signal is used as an input to a Fast Analog Linewidth Control (FALC by TOPTICA), which
generates two output signals used to apply feedback to the laser: A (slow) Unlimited Integrator Output
signal is used to offset slow drifts in the laser frequency by modulating the voltage of piezo changing
the length of the external cavity 𝐿 (not shown in Figure 3.3). The Main Output provides feedback on
the current supplied to the laser diode to compensate for fast changes in the frequency. Since for the
dephasing of single-photon Rabi oscillations only fast changes in the frequency are relevant, we will
focus on these in the following.

Each component in the fast feedback loop has an individual complex transfer function 𝑇 (𝑠) character-
izing the relation between an in- and an output signal 𝑥(𝑡) and 𝑦(𝑡) of each component. The transfer
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function is defined via the Laplace transform as [53]

𝑇 (𝑠) = 𝑌 (𝑠)
𝑋 (𝑠) (3.2)

𝑋 (𝑠) =
∫ ∞

0
𝑒
−𝑠𝑡
𝑥(𝑡)d𝑡 (3.3)

𝑌 (𝑠) =
∫ ∞

0
𝑒
−𝑠𝑡
𝑦(𝑡)d𝑡, (3.4)

where 𝑥(𝑡) and 𝑦(𝑡) are the in- and output signals in the time domain. The parameter 𝑠 is a complex
number. The real part of 𝑠 describes how fast the signals 𝑥(𝑡) and 𝑦(𝑡) decay in time and the imaginary
part describes the frequency with which 𝑥(𝑡) and 𝑦(𝑡) oscillate in time. The transfer function is complex
valued characterizing not only the amplitude relation between an in- and an output signal but also their
phase relation.

Each component of the feedback loop introduces noise, disturbing the frequency stabilization. The
noise can either be electronic noise or noise in the laser frequency. For the analysis presented in this
thesis, the intrinsic laser frequency noise (𝑛(𝑡) in Figure 3.3) is dominating all electronic noise and can
therefore be considered the only source of noise in the feedback loop. In the following, the components
of the feedback loop will be introduced and their impact on the feedback loop performance is analyzed.

3.3.1 Fast Analog Linewidth Control

The Fast Analog Linewidth Control (FALC) is the main tool to tune the response of the feedback loop to
keep the frequency constant at the set point producing a steady state in the laser frequency.

The input of the controller is an electrical error signal 𝑒(𝑡) = 𝑔(𝑡) − 𝑆 which is the difference between
the measured frequency signal 𝑔(𝑡) and the set point 𝑆 (see Figure 3.3). To produce the output signal
based on the input signal, the controller uses three fundamental components: Proportional amplifiers,
Integrators and Differentiators. These will be introduced in their most basic form here:

A proportional amplifier amplifies the input error signal 𝑒(𝑡) producing an output signal of the
form [53]

𝑢𝑝 (𝑡) = 𝑘 𝑝 · 𝑒(𝑡) (3.5)

where 𝑘 𝑝 is the amplifier gain which also defines the transfer function 𝑇𝑝 = 𝑘 𝑝. If a feedback loop is
realized with a proportional amplifier only it is not capable of achieving a steady state with 𝑒(𝑡) = 0
(see [53]).

An integrator is capable of reducing such offsets in the error signal by integrating the error signal over
time [53]

𝑢𝑖 (𝑡) = 𝑘𝑖
∫ 𝑡

0
𝑒(𝜏)d.𝜏 (3.6)

The transfer function of an Integrator is given by 𝑇𝑖 = 𝑘𝑖/𝑠, where 𝑠 denotes the variable defined in the
Laplace Transform (see Equation 3.4) [53]. If one feeds a sinusoidal signal into an integrator the output
signal will be delayed by 90°. Therefore, an Integrator produces a lag in the output phase relative to the
input phase.
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Control Probe
𝑓1 𝑓2 𝐾 𝑓1 𝑓2 𝐾

XSLI - - 1 - - 1
SLI 2.4 kHz 140 kHz 1 1.1 kHz 65 kHz 1
FLI 6.5 kHz 80 kHz 1 - - 1
FLD 1 MHz 190 kHz 5 1 MHz 190 kHz 5

Table 3.1: Set corner frequencies of the Main branch of the Fast Analog Linewidth Control of the probe and
the control laser. Plugging these values into Equation 3.8 will lead to the transfer functions of each component.
Entries denoted with “-” indicate that the corresponding component was disabled.

As the third component, the Differentiator produces an output signal depending on the derivative of
the error signal [53]

𝑢𝑑 (𝑡) = 𝑘𝑑
d𝑒
d𝑡

(3.7)

with a transfer function 𝑇𝑑 = 𝑘𝑑 · 𝑠. Here the differentiation leads to an advance in the phase of 90° in
the output signal.

If one combines a differentiator and an integrator, one can create a lead-lag or a lag-lead compensator
which have a transfer function of the form [54]

𝑇𝑠 = 𝐾
𝑓2 + 𝑠
𝑓1 + 𝑠

(3.8)

where 𝐾 is the overall gain of the controller stage. 𝑓1 and 𝑓2 are the corner frequencies determining
which noise signals are amplified/attenuated. If one chooses 𝑓1 < 𝑓2 one obtains a lag-lead compensator
which has a high gain for low frequencies and produces a phase lag. In the opposite case, one gets a
lead-lag filter, which has a high gain for high frequencies and produces a phase lead.

The Fast Circuit Branch of the Fast Analog Linewidth Control consists of three Lag-Lead compensators
and one Lead-Lag compensators connected in line with each other: An Extra Slow Limited Integrator
(XSLI), a Slow Limited Integrator (SLI), a Fast Limited Integrator (FLI) and a Fast Limited Differentiator
(FLD). Each of these components is supposed to be used for different, yet overlapping, frequency ranges,
such that a broad range of fluctuations can be compensated for (see Figure 3.4) [55].

Limited means here that the controllers are integrating only over a limited period of time, which
prevents the controller from doing a windup. This occurs if the controller runs into one of its output
boundaries and then integrates the saturated error signal [53].

By adjusting the corner frequencies 𝑓1 and 𝑓2 of each component, one can tune the overall transfer
function of the controller. Table 3.1 shows the corner frequencies set in the Fast Analog Linewidth
Control of the probe and the control Feedback loop. Figure 3.4 shows the transfer functions of the
components of the controllers of the probe and control feedback loop for these settings in a Bode Plot.
Such a Bode plot shows the amplitude and the phase relation between the in- and the output signal
plotted against the frequency of the input signal. One can see there how the amplifications and induced
phase leads or lags are summing up leading to the total transfer function of the controller. One can
see the three lag-lead filters have a high gain at low frequencies, while the Fast Limited Differentiator
compensates for fluctuations in the high frequency regime. The total transfer function of the controller is
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Probe 

Control

Figure 3.4: Bode plots of the open loop transfer function of the Fast Analog Linewidth Control of the probe
and control laser for the settings from Table 3.1. The transfer functions of the Extra Slow Limited Integrator
(XSLI), Slow Limited Integrator (SLI), Fast Limited Integrator (FLI) and the Fast Limited Differentiator (FLD)
were calculated using Equation 3.8 to produce the phase and amplitude relation between in- and output of each
component. Transfer functions of components that were turned off are not plotted. The total transfer function (light
purple) was calculated from the product of the component transfer functions. The transfer function was measured
by doing an open-loop network measurement of the (fast) Main Branch. The difference in magnitude between the
measured and calculated curves results from an additional amplifier in the FALC. The limited bandwidth of the
controller is visible as a drop in magnitude and phase towards higher frequencies in the network measurement. In
the calculation the limited bandwidth of the controller was neglected.
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the product of the transfer function of the components.
To quantify the calculated total transfer function of the FALC, the transfer function of the controller

was experimentally measured performing a network measurement. In a network measurement a
monochromatic RF-signal is fed into the device to be analyzed (here the FALC) and the output signal
of the device is measured. By comparing the in- and the output signal of the controller, phase and the
amplitude relation can be obtained. Varying the frequency of the input signal produces the Bode plots of
interest.

To perform the measurement, the signal coming from the network analyzer was fed into the main input
of the controller and the signal from the controllers main output is fed back into the network analyzer.
Comparing the calculated and the measured responses in Figure 3.4 of the FALC controllers, one can see
that they are in good agreement. In the calculation, the input amplification and the main gain affecting
the output signal were not taken into account, which just shifts the gain profile up and down and has no
impact on the phase relation. This is similar to the transfer function of a proportional amplifier which
is independent of 𝑠. For frequencies beyond 1 MHz, one can see that the measured and the calculated
curves for the amplitude and the phase relation differ significantly. This is due to the limited bandwidth
of the controller, which is expected to be ∼10 MHz. Thereby, the feedback loop has an upper frequency
limit where it can compensate.

The second Unlimited Integrator Output is used to offset slow drifts in the frequency e.g. due to slow
changes in the ambient temperature. In the feedback loop this branch controls the voltage applied to
the piezo crystal with the Bragg reflector. This branch consists of an integrator (see Equation 3.6) and
amplifiers. This branch has a significantly higher DC gain (up to 110 dB) to reset the integrators in the
fast branch to 0 once the Unlimited Integrator has settled [55]. It is not possible to perform a network
measurement of the slow branch since the integrator is too slow and one would measure the integrator
windup.

With the dual branch approach, the controller is capable of compensating for slow drifts as well as fast
fluctuations of the laser frequency.

3.3.2 External Cavity Diode Lasers

The probe and the control laser are both external cavity diode lasers (ECDLs) by TOPTICA. Figure 3.5(a)
shows a sketch of the laser diode unit which is similar in both lasers: The laser diode supplied with
a current emits light that forms a standing wave inside the semiconductor active medium. Thus, the
diode itself works as a cavity filtering the wavelength of the light emitted (internal mode) [56]. The
light passes through an anti-reflection coated window and then falls on a blazed grating mounted on a
piezo crystal. The angle of the blazed grating tuned such that the -1st order is reflected into the laser
diode. The wavelength can be tuned with the angle of the blazed grating and can thus be used to tune the
wavelength of the emitted light. The light that is reflected back into the laser diode is reflected by the
back facet of the laser diode and forms another cavity with length 𝐿 (external mode).

Figure 3.5 (b) shows a sketch of the overall emission profile of an ECDL, which is the product of the
internal mode, external mode, grating mode and the medium gain, which is almost flat in comparison to
the other modes. The overall gain of the laser is chosen that it is > 1 for exactly one laser line such that a
single mode is emitted.

By tuning the position of the different modes, the wavelength of the emitted light can be controlled.
To tune the external mode, which offers the finest resolution in frequency, one can change the voltage
supplied to the piezo to change the length 𝐿. Additionally, one can change the current applied to the
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Figure 3.5: Simplified sketch of Probe/Control laser setup and the laser gain profile. (a) Sketch of the laser diode
setup used in the probe and the control laser. The laser diode (brown bulb) emits light that forms a standing wave
inside the laser diode (internal mode). The light falls on the blazed grating, with the -1st order being reflected
(grating mode) in the laser diode. The 0-th reflection order is reflected by the internal mirror can then be used in
the experiment or be further amplified by e.g a tapered amplifier. (b) Sketch of the gain profile of the external
cavity diode laser by TOPTICA in arbitrary units. The angle of the grating defines the grating profile has a
width of ∼50 GHz. The formation of standing waves in the diode laser medium defines the internal modes with a
separation of ∼64 GHz and a width of 20 GHz. The cavity formed by the grating and the rear facet provides the
finest selection of the laser frequency with a separation of 9 GHz. Not drawn in the sketch is the gain profile of the
laser medium which has a width of ∼5000 GHz. The total gain profile is calculated as a product of the individual
gain profiles. Widths of the gain profiles are taken from [58]

laser diode tuning the refractive index in the diode medium or change the temperature of the laser diode,
which also tuning the length of the diode medium [56, 57].

As the external cavity has the finest resolution, one could try tuning the laser by only changing the
voltage controlling the piezo crystal. However, if the voltage is tuned too far, the carrier peak of the
external cavity is shifted to a lower gain due to the internal mode and another peak is shifted to the center
of the gain profile. The laser frequency rapidly changes towards the peak in the center of the internal
mode. The sudden change in the frequency is commonly referred to as a mode-hop. The frequency range
across which the laser can be tuned without a mode-hop occurring is called the mode-hop-free tuning
range [57].

To increase the mode-hop-free tuning range the probe and the control laser have a feed-forward
implemented, which adjusts the current of the diode if the voltage applied to the piezo crystal is
changed [58]. With the feed-forward, the probe laser has a mode-hop-free tuning range of 30 GHz and
the control laser has a mode-hop-free tuning range of 20 GHz.

In the case of a feedback loop as shown in Figure 3.3, the only source of noise is the intrinsic laser
frequency noise 𝑛(𝑡) of the laser diode. For any type of laser, the fundamental limit for the linewidth is
given by the Shawlow-Townes-Limit [59]

Δ𝜈laser =
4𝜋ℎ𝜈0(Δ𝜈ec)

2

𝑃out
(3.9)

where 𝜈0 denotes the laser frequency, ℎ is the Planck constant, Δ𝜈ec is the full width at half maximum of
the external cavity and 𝑃out is the output power of the laser. The white noise results from spontaneous
emission inside the laser medium and linear losses in the external cavity [60].

In a diode laser, the noise is normally overshadowed by 1/ 𝑓 -noise or flicker noise in the frequency
range up to 1 MHz [61]. The flicker noise originates from the discreteness of charge carriers in the
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(a)

(b)

Input
Network analyzer
Source

Laser Laser noise
interferometer

DC input

Figure 3.6: Open-loop Bode plots of the probe and the control laser. (a) Measurement setup for the open loop
measurement. The source output of the network analyzer is connected to the DC input of the laser and the laser
light is analyzed with the interferometer explained in Chapter 4. The signal measured with the interferometer is
sent back into the network analyzer. (b) Bode plot of the open loop transfer function of the probe and control laser.

semiconductor of the laser diode. The presence of charge carriers affects the refractive index in the gain
medium which causes a fluctuation in the frequency [62–64].

Additionally, the electronic components of the laser and outer disturbances can cause noise in the
laser frequency. Because drifts in the laser diode temperature induce a change in the laser frequency, the
probe and the control laser have an internal feedback loop stabilizing the temperature of the diode.

To analyze the response of the probe and control laser to externally applied feedback the open loop
transfer function is measured. Figure 3.6(a) shows the measurement setup: the network analyzer
modulates the diode current via the AC input of the laser and the response is measured using a laser
noise interferometer. The interferometer setup will be introduced in detail in chapter 4. The cable from
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the interferometer is terminated with a 50 Ω resistor to prevent cable reflections.
Figure 3.6(b) shows the Bode plot of the response of the probe and the control laser. Comparing the

amplitude relation between the signal sent into the laser and the measured response it can be observed,
that the control Bode plot has a hump at around 50 kHz. In contrast to that the amplitude of the
measurement with the probe laser is steadily decreasing for higher frequencies. In the FALC such a
hump in the Bode plot was caused by a Lead-Lag-filter. The sharp drop in the measured amplitude
beyond 10 MHz is due to the suppression effect of the interferometer (see Figure 4.8). When looking
at the phase relation in the Bode plot, one notices that for low frequencies the phase of the probe and
the control laser match. At around 50 kHz the phase of the control increases, which shows that there is
an internal phase-lead built into the control laser. Compared to the FALC controllers of both lasers,
the lasers themselves introduce a significant phase lag into the feedback circle. Therefore, the lasers do
contribute to the limited bandwidth of the feedback loop.

3.3.3 Frequency Reference Measurements of the Probe and Control Laser

The control laser is stabilized using an Ultra Low Expansion (ULE) cavity from Stable Laser Systems
using a Pound-Drever-Hall signal [51]. This cavity has a linewidth of ∼75 kHz and its transmission
peaks are drifting by ∼21 kHz per day. A small fraction of the light coming from the laser diode with the
frequency 𝜔0 is coupled into an optical fiber with a fiber EOM. For the RF-input of the fiber EOM two
signals are being mixed: A signal with frequency Ω = 25 MHz coming from the control laser control
unit and a signal from an RF-generator with the frequency 𝜔RF (in the case of the 108𝑆1/2 Rydberg state
this was 279 MHz) to shift the carrier frequency onto a cavity peak. The signal Ω = 25 MHz is used to
modulate small sidebands on the carrier of the laser light. The transmission of the EOM then has in total
three sets (separated by the RF-frequency) of a carrier peak with the power 𝑃𝑐 and two small sidebands
with the power 𝑃𝑠 with a separation of Ω.

For the lock, the carrier with the lowest or the highest frequency sidebands at 𝜔𝑙 = 𝜔0 ±𝜔RF are used.
The light is then sent into the cavity and the back reflection is recorded on a photodiode. The measured
reflected signal is then fed back into the laser control unit, where it is mixed with the 25 MHz-signals
that created the small sidebands which creates the Pound-Drever-Hall signal. A detailed explanation of
the mixing procedure leading to the desired error signal can be found in [51]. The error signal 𝜖 depends
on the frequency 𝜔𝑙 of the sideband as [51]

𝜖 (𝜔𝑙) = −2
√︁
𝑃𝑐𝑃𝑠 Im

{
𝐹 (𝜔𝑙)𝐹

∗(𝜔𝑙 +Ω) − 𝐹∗(𝜔𝑙)𝐹 (𝜔𝑙 −Ω)
}

(3.10)

𝐹 (𝜔) =
𝑟 (exp

{
𝑖 𝜔
Δ𝜈FSR

}
− 1)

1 − 𝑟2 exp
{
𝑖 𝜔
Δ𝜈FSR

} (3.11)

where 𝑟 denotes the reflectivity of the cavity mirrors and Δ𝜈FSR denotes the Free Spectral Range of
the cavity. This signal has a steep slope at multiples of the Free Spectral Range 𝑁 · Δ𝜈FSR and can
therefore be used to stabilize the frequency of the laser. The mixing of the RF signal allows shifting the
Pound-Drever-Hall signal freely relative to the cavity peaks.

The probe laser is locked to the master laser, which itself is locked to the same ULE cavity as the
control laser using a Pound-Drever-Hall signal. To generate an error signal, a small part of the probe
laser light is split off and shifted with an acusto-optic modulator by 80 MHz. The shifted probe light is
overlapped with a part of the light from the master laser and the beat is detected with a fast photodiode.
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As the photodiode cannot resolve THz frequencies, the measured signal consists of a constant offset
and a term oscillating with the frequency difference 𝜔𝑑 between the light of the probe and the master
laser [52]. The beat signal is processed in a digital phase frequency detector that compares the beat
frequency to a reference RF-signal. Depending on the sign of 𝜔𝑑 , the digital phase frequency detector
gives out a positive or negative digital signal, which after being sent through a low-pass filter can be
used as an error signal.

3.3.4 Closed Loop Transfer Function of the Feedback Loop

If one wants to calculate the response of the complete feedback loop to noise introduced to the laser,
one has to compute the Closed Loop Transfer Function. In a closed feedback loop the phase relation
between the noise and the response of the feedback loop is crucial. In the optimal case the feedback
loop counteracts the noise signal causing optimal compensation. In this thesis, this will be referred to as
zero phase delay. As it was shown in Figure 3.4 the phase delay depends on noise frequency due to the
limited bandwidth of the components. If the phase delay is at 180° the noise signal and the feedback
loop response are exactly in phase. To prevent the feedback loop from amplifying the high-frequency
noise components leading to resonant behavior of the system the gain is chosen to be smaller than one
before a phase delay of 180° is reached [53, 65].

Mathematically, the closed loop transfer function depends on what is considered as the in- and the
output signal (see Figure 3.3).

In the following the dependence of the output signal 𝑧(𝑡) on a fluctuation of the laser frequency due to
its intrinsic noise is described. Both are connected via 𝑦(𝑡)

𝑧(𝑡) = 𝑛(𝑡) + 𝑦(𝑡). (3.12)

Using the linearity of integrals, one can derive the same relation for Laplace transforms. In the following
Laplace transforms will the denoted by capital letters:

𝑍 (𝑠) = 𝑁 (𝑠) + 𝑌 (𝑠). (3.13)

By using the definition of the transfer function, one can rewrite 𝑌 (𝑠) as:

𝑌 (𝑠) = 𝑇laser(𝑠) · 𝐶 (𝑠) (3.14)
= 𝑇laser(𝑠) · 𝑇FALC(𝑠) · 𝐸 (𝑠) (3.15)
= 𝑇laser(𝑠) · 𝑇FALC(𝑠) · (𝑅 − 𝐺 (𝑠)) (3.16)
= 𝑇laser(𝑠) · 𝑇FALC(𝑠) · (𝑅 − 𝑇FRM(𝑠) · 𝑍 (𝑠)). (3.17)

The steady state is reached once the Unlimited Integrator compensates for DC offsets. In the steady state
we set 𝑆 = 0. By plugging Equation 3.17 into Equation 3.13 one finds:

𝑍 (𝑠) = 𝑁 (𝑠) + 𝑇laser(𝑠) · 𝑇FALC(𝑠) · 𝑇FRM(𝑠) · 𝑍 (𝑠) (3.18)

⇐⇒ 𝑍 (𝑠)
𝑁 (𝑠) =

1
1 + 𝑇laser(𝑠) · 𝑇FALC(𝑠) · 𝑇FRM(𝑠) = 𝑆(𝑠) (3.19)

where the latter 𝑆(𝑠) is the closed Loop transfer function or sensitivity function [53]. However, this
transfer function is only valid for noise that is introduced at the laser output. If one e.g. wants to consider
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the impact of electronic noise introduced by the controller, the transfer function changes due to the
different injection point.

To measure the response of the feedback loop to the intrinsic laser frequency noise, one has to measure
the laser frequency deviations outside the feedback loop. In the next chapter, I will introduce a laser
noise interferometer that is capable of characterizing the frequency noise of lasers over a broad range of
wavelengths.

29



CHAPTER 4

Laser Noise Interferometer

As it was shown in Chapter 3 a significant dephasing is experimentally observed. Aside the dephasing
due to differential light shifts, thermal motion and inhomogeneous density the fit shown in Figure 3.2
suggests, that frequency noise contributes to the overall dephasing of the superatom. To quantify this
observation, one needs to know the noise characteristics of the two excitation lasers.

In this chapter the design of a Laser noise interferometer is presented that is able to measure the
frequency noise spectral density of the probe and the control. The device needs to be capable of
translating a frequency deviation into a measurable voltage deviation. A fiber-delayed Mach-Zehnder
interferometer is used since it translates frequency deviations into a change the phase difference. This
phase difference alters the intensity of the interference pattern, which is measured using an amplified
photodiode. To assure a linear relation between phase difference and intensity a feedback loop optical
path length in one interferometer arm. In this chapter the setup will be introduced in detail and the data
post-processing is presented to extract the frequency noise spectral densities of the analyzed laser light.

In the scope of this thesis measuring frequency noise with a Fabry-Perot interferometer was investigated.
At the of this chapter this alternative method is introduced and compared to the Mach-Zehnder
interferometer.

4.1 Optical and Electronic Setup

Figure 4.1 shows a picture and a sketch of the fiber-delayed unbalanced Mach-Zehnder interferometer
used to analyze the laser light. In the following it will be distinguished between the long arm, which
contains the optical fiber and the path length stabilization and the short arm, which has no delay.

The light is introduced into the setup via a polarization maintaining single mode fiber. For coupling
light into fibers and collimating light after optical fibers lenses (A110TM-B from Thorlabs) with a focal
length of 6.24 mm were used. Using lenses with the same focal length improves the fiber coupling and
ensures a similar beam size for the long and the short arm.

Using a Zero-Order Half-Wave Plate (HWP) in combination with a polarizing beam splitter (PBS)
the light is split into the long and the short arm with variable power. Thus, one can adjust the power
splitting of both arms such that both beams have the same power at the second beam splitter, increasing
the visibility of the interference pattern.

In the long arm the light is coupled into a 10-meter long polarization-maintaining single mode fiber,
which is suitable for wavelengths between 770 nm and 1100 nm (P3-780PM-FC-10 from Thorlabs). A
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Figure 4.1: Sketch and photograph of the interferometer setup used to measure frequency noise. (a) Shows the
sketch of the setup, with the light beam passing through (red). The light is fed in through a fiber (input) and split
into the two arms using a Half-Wave-Plate (HWP) and a polarizing beam splitter (PBS). The light in the long arm
is then coupled into an optical fiber (blue) and both arms are overlapped on a 50/50 beam splitter. One of the two
transmission signals is recorded on an amplified photodiode (PD) and with a BNC-Y-piece the output is fed into an
oscilloscope and the input of a PI-controller. The slow output of the PI controller is controls the piezo mirror in
the long arm. (b)Shows the photograph of the setup, abbreviations are the same as in the sketch.

Half-Wave Plate in front of the fiber is used to adjust the polarization to one of the two fiber polarization
axes. This reduces intensity fluctuations at the output of the fiber due the different propagation speeds of
the fast and the slow polarization axis.

After the fiber the beam is reflected using the mirror mounted on the piezo electric crystal, that be
controlled by applying a voltage. With the piezo electric crystal the relative phase between the light
coming the long and the short arm can be regulated. The third Half-Wave Plate is used to match the
polarizations of both interferometer arm to get maximum visibility in the interference signal. Both
beams are overlapped on a 50/50-Beamsplitter (BS).

One of the overlapped beams is then measured on the amplified photodiode (PDA10A2 from Thorlabs),
while the other beam is being blocked. The output of the photodiode is split using a BNC-Y-piece and
connected to the input of the PID box and an oscilloscope recording the frequency noise. Each arm is
terminated externally with a 50 Ω resistor. This is important to match the impedance of the cable to
reduce reflections of the electric signal.

For the stabilization the P- and the I-part of the PID-box are used stabilizing the optical path length
difference between the two arms of the interferometer. Figure 4.2 shows the relation between the intensity
at the interferometer output as a function of the phase difference between the long and the short arm. By
controlling the optical path length difference such that the phase difference is at the maximum slope
(purple point) a linear relation between the phase difference and the intensity can be assumed. To
accomplish this the slow output of the PID-controller is connected to the piezo electric crystal.

It is crucial that the lock is tuned to only compensate for slow drifts with frequencies below 1 kHz
resulting from a change in temperature or vibrations. As the feedback loop compensates all fluctuations
including frequency noise, the bandwidth of the feedback loop marks the lower boundary for measurable
frequency noise fluctuations.

To ensure that the feedback loop only compensates for slow drifts a closed-loop network measurement
is performed (see Figure 4.3 (a)). The interferometer is stabilized using a laser and the PI-controller.
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Figure 4.2: Sketch of Interferometer output intensity depending on the phase difference Φdiff between the
interferometer arms (brown). By using the feedback loop the interferometer is stabilized such that the phase
difference between the interferometer is at the maximum slope (purple point). Under this condition the transmission
signal can be approximated by a linear curve (orange).

The Source output of the network analyzer and is connected to the second input of the PID controller,
introducing a signal into the feedback loop. The monitor output of the PID-box is connected to the Input
of the network analyzer.

Figure 4.3 (b) shows the observed Bode plots of the measurement. One can see that the feedback loop
is compensating signals a frequency below 100 Hz reducing the amplitude and amplifies the signals with
frequencies between 100 Hz and 1 kHz. Beyond 1 kHz the signal fed in by the spectrum analyzer and the
measured signal have the same amplitude and are in phase. Therefore, the there is no response by the
system for frequencies larger than 1 kHz.

For recording the data an oscilloscope (WaveProHD by Teledyne LeCroy) with a ns-time-resolution
was used. The oscilloscope can record traces with up to 100 million data points. This offers the
possibility of resolving fluctuations in the low kHz and the high MHz regime. In contrast to a spectrum
analyzer the use of an oscilloscope requires performing a Fourier transformation of the measured data to
acquire a spectrum.

The possible wavelengths of the light that can be analyzed with this interferometer are limited by
its components. The most crucial are the Half-Wave-Plates, with a narrow range of wavelengths.
However, when changing the light source, these can be exchanged rather quickly. The other two limiting
components are the optical fiber (770 nm to 1100 nm) and the polarizing beam splitter (600 nm to
1000 nm). Therefore, the setup can be used for laser light ranging from 770 nm to 1000 nm.

4.2 Theoretical Interferometer Output Signal

In the following a theoretical description of the measured interference signal is developed to analyze the
recorded data successfully.

When two light beams with the electric field 𝐸1(𝑡) = 𝐸1 · sin (2𝜋𝜈𝑡 +Φ1) and 𝐸2(𝑡) = 𝐸2 ·
sin (2𝜋𝜈𝑡 +Φ2) with same frequency 𝜈 are interfered on a beam splitter the intensity 𝐼 of interference
has the form

𝐼 = 𝐸
2
1 + 𝐸2

2 + 𝐸1𝐸2(cos
(
Φ1 −Φ2 ± 𝜋

)
− cos

(
4𝜋𝜈𝑡 +Φ1 +Φ2 ∓ 𝜋

)
) (4.1)

Here the phase shift by 𝜋 results from the fact that one of the two beams has been reflected and one
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Figure 4.3: Measurement of the interferometers PI controller. (a) Measurement setup to analyze the response of
the closed feedback loop. The network analyzer feeds a sinusoidal signal into the Input 2 of the controller and
measures the response at the Monitor output of the controller. The controller drives the piezo electric crystal with
the mirror. This affects the measured signal on the photodiode (red arrow) which is fed into Input 1. (b) Measured
Bode plot of the PI-controllers response in the closed loop measurement. The amplitude (brown) and the phase
(yellow) response of the closed feedback loop was measured for a signals fed in between 10 Hz to 100 kHz. The
amplitude response at below 100 Hz is negative since the feedback loop is compensating for the signal from the
spectrum analyzer. The phase signal was shifted by 180◦ since the network analyzer cannot distinguish between
absolute phase shifts, which are multiples of 180◦. In this way the in- and output signal match if the feedback loop
does not respond.

was transmitted by the beam splitter. This depends on which of the two interference signals is being
measured.

In the case of a Mach-Zehnder Interferometer the input beam is broken down into two beams 𝐸1(𝑡)
and 𝐸2(𝑡) with the first polarizing beam splitter and overlapped on the beam splitter again. If one then
measures the transmitted power after the second beam splitter intensity has the form:

𝐼 = 𝐸
2
1 + 𝐸2

2 + 𝐸1𝐸2(cos
(
Φ1 −Φ2

)
− cos

(
4𝜋𝜈𝑡 +Φ1 +Φ2

)
), (4.2)

where Φ1 and Φ2 describes the phase the light acquired passing through the arms of the interferometer.
In the following we will denote the difference between Φ1 and Φ2 as Φdiff = Φ1 −Φ2.

Since 𝜈 is in the THz regime the second term in Equation 4.2 is discarded since it cannot be resolved
with a photodiode. The measured intensity then simplifies to

𝐼 = 𝐸
2
1 + 𝐸2

2 + 𝐸1𝐸2 cos
(
Φdiff

)
. (4.3)

In the following it is assumed that a change in the phase difference Φdiff originates from a change of the
light frequency 𝜈(𝑡) over time. For that the frequency is split into the constant carrier frequency 𝜈0 and
the fluctuations Δ𝜈(𝑡)

𝜈(𝑡) = 𝜈0 + Δ𝜈(𝑡), (4.4)

where Δ𝜈(𝑡) denotes the noise that we want to measure (see Figure 4.4 (a)).
If one assumes that one of the beams is delayed by the time 𝜏 ≈ 49 µs,due to passing through the
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Figure 4.4: Illustration of the transformation of a frequency trace into a power spectrum. (a) A sketch of the
fluctuation of a laser frequency 𝜈(𝑡) in time around the carrier frequency 𝜈0. (b) Sketch of a discrete frequency
noise power spectral density 𝑆𝜈 where 𝑓𝑖 denotes the frequency of each noise component with a bin width of Δ 𝑓 .

optical fiber, this means that phase difference at time 𝑡 corresponds to

Φdiff (𝑡) = 2𝜋
∫ 𝑡

𝑡−𝜏
𝜈(𝑡′)d𝑡′ +Φ0 = 2𝜋

∫ 𝑡

𝑡−𝜏
Δ𝜈(𝑡′)d𝑡′ +Φ0 + 2𝜋𝜈0𝜏︸        ︷︷        ︸

Φ
′
0

. (4.5)

Here Φ0 denotes the phase difference resulting from the difference in optical path length in both arms.
All time-constant contributions can be summarized by Φ

′
0 since the setup is only capable of measuring

changes in the phase difference due to the feedback loop.
The fluctuation of the frequency Δ𝜈(𝑡) approximated as a sum of oscillations with the discrete

frequencies 𝑓𝑖 and a random phase Φ 𝑓 :𝑖 [44]

Δ𝜈(𝑡) =
∑︁
𝑖

√︃
2𝑆𝜈;𝑖Δ 𝑓 cos

(
2𝜋 𝑓𝑖𝑡 +Φ 𝑓 ;𝑖

)
, (4.6)

where Δ 𝑓 = 𝑓𝑖+1 − 𝑓𝑖 denotes the difference of two frequencies and 𝑆𝜈;𝑖 is the spectral power of each
noise component with frequency 𝑓𝑖 (see Figure 4.4).

Plugging Equation 4.6 into Equation 4.5 leads to

Φdiff (𝑡) =
∑︁
𝑖

√︃
2𝑆𝜈;𝑖Δ 𝑓 2𝜋

∫ 𝑡

𝑡−𝜏
cos

(
2𝜋 𝑓𝑖𝑡 +Φ 𝑓 ;𝑖

)
d𝑡′ (4.7)

=
∑︁
𝑖

√︃
2𝑆𝜈;𝑖Δ 𝑓 2𝜋

[
1

2𝜋 𝑓𝑖
sin

(
2𝜋 𝑓𝑖𝑡 +Φ 𝑓 ;𝑖

)] 𝑡
𝑡−𝜏

+Φ
′
0 (4.8)

=
∑︁
𝑖

√︃
2𝑆𝜈;𝑖Δ 𝑓

2
𝑓𝑖

sin
(
𝜋 𝑓𝑖𝜏

)
cos

©«
2𝜋 𝑓𝑖𝑡 − 𝜋 𝑓𝑖𝜏 +Φ 𝑓 ;𝑖︸        ︷︷        ︸

Φ
′
𝑓 ;𝑖

ª®®®®¬
+Φ

′
0 (4.9)

=
∑︁
𝑖

√︃
2𝑆𝜈;𝑖Δ 𝑓

2 sin
(
𝜋 𝑓𝑖𝜏

)
𝑓𝑖

cos
(
2𝜋 𝑓𝑖𝑡 +Φ

′
𝑓 ;𝑖

)
+Φ

′
0 (4.10)

where one can sum up the constant phases in the cos since these are experimentally not measurable. This
solution can be broken down into four parts:
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•
√︁

2𝑆𝜈;𝑖Δ 𝑓 contains the amplitudes of each frequency noise component, are measured.

• 2 sin(𝜋 𝑓𝑖 𝜏)
𝑓𝑖

is a suppression term that describes destructive interference of noise components,
between the long and the short interferometer arm.

• cos
(
2𝜋 𝑓𝑖𝑡 +Φ

′
𝑓 ;𝑖

)
is the time-dependent term, that contains the oscillation of each noise component.

• Φ
′
0 is a constant phase added arising from the intrinsic phase difference of the light passing through

both interferometer arms. This value is affected by environmental changes, e.g. temperature drifts.
Especially the optical fiber is prone to expanding when the ambient temperature changes affecting
the optical path length of the long arm. Such drifts are compensated by the feedback loop and thus
Φ

′
0 is constant in time.

As indicated in Figure 4.2 at the locking point is chosen such that the measured intensity 𝐼 is proportional
to the phase difference Φdiff . Therefore, one expects the measured intensity to have the form:

𝐼 (𝑡) =
∑︁
𝑖

√︃
2𝑆𝜈;𝑖Δ 𝑓

2 sin
(
𝜋 𝑓𝑖𝜏

)
𝑓𝑖

cos
(
2𝜋 𝑓𝑖𝑡 +Φ

′
𝑓 ;𝑖

)
+ 𝐼offset, (4.11)

where 𝐼offset denotes the measured intensity at the locking point, if there was no frequency noise.

4.3 Experimental Determination of Laser Frequency Noise Spectra

To perform a measurement the interferometer has to be set up for the wavelength to be analyzed. To
do that suitable half-wave-plates have to be put in, the light has to be coupled into the optical fiber, the
pointing and polarization of the light coming from the long and the short arm has to match.

The measurement of the frequency noise power spectral density consists of three steps: A calibration
measurement, the noise spectrum measurement and a background measurement.

For the calibration the feedback loop is turned off and a function generator is connected to the piezo
electric crystal with the mirror. The function generator feeds a saw-tooth signal into the piezo electric
crystal, which corresponds to linearly scanning the phase difference Φdiff up and down. An oscilloscope
trace of the measured intensity can be seen in the left plot of Figure 4.5. The sharp edges visible
correspond to the saw-tooth changing from a positive to a negative slope. Slight asymmetries of the
curve around this turning points result from the hysteresis of the piezo electric crystal [66]. To these
traces, sinusoidal function can be fitted, to extract the slope at the locking point (see yellow curves in
Figure 4.5).

For the noise measurement the slow-output of the PID-controller is connected to the piezo mirror and
interferometer is locked using the P- and the I-Part such that the optical path length difference is kept
constant. However, the response is limited by the maximum output voltage of PID-controller. To increase
stability the setup is placed on a temperature-stabilized and covered laser table with closed covers. The
setup is especially sensitive to drifts in the temperature changes as they cause the optical fiber to expand
leading to a change in the optical path length difference. Once the setup has thermalized one can record
the output signal of the photodiode with the oscilloscope. In the oscilloscope the distance between two
data points is set to 10 ns and traces of 108 data points are taken (see light purple curve in Figure 4.5).
By collecting multiple data traces one can reduce the statistical error in the measured spectrum.
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Figure 4.5: Calibration measurement and recorded noise traces. (Left) Example of a calibration measurement
where the optical path difference is scanned by feeding a saw-tooth signal into the piezo mirror. The sharp edge in
the center corresponds to an edge in the saw-tooth signal. A cosine function can be fitted to the steady part of
the trace (yellow) to obtain the maximum slope. (Right) Traces of a noise (light purple) and a background (dark
purple) measurement of the probe laser. The noise measurement is performed with the interferometer locked, and
the background measurement is conducted with the short arm blocked. The y-axis shows measured output voltage
of the amplified photodiode.

For the background measurement the short interferometer arm is blocked and traces of photodiode
signal are recorded with the oscilloscope (see dark purple trace in Figure 4.5). With the background
measurement one wants to measure fluctuations in the interference signal that do not originate from the
frequency noise: These are on one hand fluctuations in the power and polarization in the laser light. The
latter affects the splitting of the two interferometer arms, which affects the measured intensity. Also,
this measurement accounts for fluctuations in the light transmitted through the fiber due to temperature,
pressure drifts or mechanical vibrations, which also affects the measured intensity.

To obtain a frequency noise spectrum, as previously described, three different traces have been
recorded: A calibration trace showing the cosine dependence of the measured voltage on the phase
difference. The noise trace with the interferometer running and locked, measuring the frequency noise of
the laser light. A background trace with one interferometer arm blocked measuring intensity fluctuations
that do not result from frequency noise of the laser light. Changes in the phase difference Φdiff are
calibrated to changes in the measured voltages𝑈 using the slope

𝛼 =
d𝑈

dΦdiff
(4.12)

from the calibration measurement. The piezo electric crystal was operated in its linear regime, with the
expansion being proportional to the voltage applied. Since the saw-tooth-signal applied to the piezo
crystal with the function generator is linear in time 𝑡 it can be approximated that 𝑡 ∝ Φdiff . This allows to
fit a function of the form

𝑓 (𝑡) = 𝐴 · sin(𝑡 · 𝐵 + 𝐶) + 𝐷 (4.13)
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to the continuously differentiable part of the calibration scan, where 𝐴, 𝐵, 𝐶, 𝐷 are fitting parameters
(see yellow curves in Figure 4.5). The proportionality between the time 𝑡 and the phase difference Φdiff
allows replacing 𝑡 · 𝐵 = Φdiff in Equation 4.13. This leads to

𝛼 =
d𝑈

dΦdiff

����
Φdiff,lock

=
d 𝑓 (Φdiff)

dΦdiff

����
Φdiff,lock

= 𝐴 · cos
(
Φdiff,lock + 𝐷

)
(4.14)

where Φdiff,lock is the phase difference at which the interferometer is locked. The value of Φdiff,lock is
calculated from the averaged noise trace𝑈data by using the inverse fit function:

Φdiff,lock = 𝑓
−1(𝑈data) (4.15)

With the value for 𝛼 calculated from the calibration measurements, the recorded noise traces can be
translated into noise spectral densities (see Figure 4.4). To turn the traces into spectra Welch’s method
instead of a Fourier transform is used, because it produces a lower uncertainty in the calculated spectrum.
In Welch’s method the noise trace is separated into overlapping segments of 𝑀 = 2 · 106 data points,
modified by a window function and then being Fourier transformed [67]. By averaging over the spectra
acquired from each window the uncertainty of the obtained spectrum is reduced significantly. Here, a
Hanning window was chosen to modify the data in each segment as [68]

𝑤H(𝑛) = 0.5(1 − cos
(
2𝜋

𝑛

𝑀

)
) (4.16)

where 𝑛 denotes the 𝑛-th data point in the segment of the length 𝑀. Due to the shorter length of
the segments compared to the entire trace, low frequencies cannot be resolved. Each segment is
𝜏 = 2 · 106 · 10 ns = 10 ms long, meaning that frequencies below 100 Hz cannot be measured. However,
these frequency noise components are anyway suppressed by the feedback loop of the interferometer.

After applying Welch’s method to the noise and the background trace one gets two voltage power
spectra 𝑆U,data and 𝑆U,background in units of V2/Hz. A voltage spectrum 𝑆𝑈 is related to the measured
voltage trace𝑈 (𝑡) by

𝑈 (𝑡) =
∑︁
𝑖

√︁
2𝑆𝑈Δ 𝑓 cos

(
2𝜋 𝑓𝑖𝑡 +Φ 𝑓 ;𝑖

)
+𝑈offset (4.17)

where 𝑆𝑈 is the corresponding spectrum and Δ 𝑓 is the distance of two frequency components 𝑓𝑖 and
𝑓𝑖+1 and the constant offset𝑈offset.

Using that the interferometer was locked at the maximum slope (see Figure 4.2) one can assume
a linear relation between the phase difference Φdiff (𝑡) and the measured the output voltage 𝑈 (𝑡). Let
ΔΦdiff = Φdiff (𝑡) − Φ

′
0 describe a change in the phase difference Φdiff (𝑡) and Δ𝑈 (𝑡) + 𝑈 (𝑡) − 𝑈offset

denote a change in the measured voltage𝑈 (𝑡). Using Equation 4.12 the relation between one can derive

Δ𝑈 (𝑡) = 𝛼 · ΔΦdiff (𝑡). (4.18)

After plugging in Equation 4.17 for𝑈 (𝑡) and Equation 4.10 for Φdiff (𝑡) one obtains∑︁
𝑖

√︁
2𝑆𝑈Δ 𝑓 cos

(
2𝜋 𝑓𝑖𝑡 +Φ 𝑓 ;𝑖

)
= 𝛼 ·

∑︁
𝑖

√︃
2𝑆𝜈;𝑖Δ 𝑓

2 sin
(
𝜋 𝑓𝑖𝜏

)
𝑓𝑖

cos
(
2𝜋 𝑓𝑖𝑡 +Φ

′
𝑓 ;𝑖

)
. (4.19)
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Figure 4.6: Measured frequency noise spectral densities of the control laser. 𝑆𝜈,laser is the frequency noise spectral
density with the background subtracted. 𝑆𝜈,background (purple) is the measured background due to fluctuations in
the laser power or polarization of the light. 𝑆𝜈,uncorr (brown) is the uncorrected frequency noise spectral density
showing the characteristic suppression dips of the interferometer.

This can be separated by each oscillation term cos
(
2𝜋 𝑓𝑖𝑡 +Φ 𝑓 ;𝑖

)
to connect the entries of the voltage

noise spectrum 𝑆𝑈;𝑖 and frequency noise spectrum 𝑆𝜈;𝑖 as

𝑆𝑈;𝑖 = 𝑆𝜈;𝑖 ·
(
𝛼 ·

2 sin
(
𝜋 𝑓𝑖𝜏

)
𝑓𝑖

)2

⇐⇒ 𝑆𝜈;𝑖 = 𝑆𝑈;𝑖 ·
(

𝑓𝑖

𝛼 · 2 sin
(
𝜋 𝑓𝑖𝜏

) )2
. (4.20)

Using Equation 4.20, the voltage noise power spectral densities 𝑆U,data and 𝑆U,background can be translated
into frequency noise power spectral densities 𝑆𝜈,data and 𝑆𝜈,background in Hz2/Hz. The final frequency
noise power spectral density 𝑆𝜈 of the laser light is given by

𝑆𝜈,laser = 𝑆𝜈,data − 𝑆𝜈,background (4.21)

Figure 4.6 shows an example of the obtained frequency noise power spectral densities 𝑆𝜈,laser and
𝑆𝜈,background measured for the control laser. To illustrate the suppression effect (see second term in
Equation 4.10), the uncorrected spectrum 𝑆𝜈,uncorr of the form

𝑆𝜈,uncorr = 𝑆U,data ·
(

1
2𝜋𝜏𝛼

)2
(4.22)

ss plotted as well. The suppression dips are visible in 𝑆𝜈,uncorr at multiples of 𝑓sup = 1/𝜏 ≈ 20 MHz.
The correction from Equation 4.20 dues not work perfectly as 𝑆𝜈,laser has significant fluctuations around
𝑓sup. This result from an inaccuracy in the calculated value for 𝜏 and 𝑆𝜈,uncorr not going to 0 but settling
at the level 𝑆𝜈,background. However, below 𝑓sup a smooth spectrum is obtained that can be used for further
analysis.
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Figure 4.7: Setup for measuring laser frequency noise with a Fabry-Perot interferometer. The laser light is
outcoupled from an optical fiber (dark blue) and then coupled into the Fabry-Perot interferometer (cavity). The
transmission signal is used to stabilize the cavity with a PID controller and to perform the actual measurement
with an oscilloscope.

4.4 Alternative: Using a Fabry-Perot Interferometer instead of a
Mach-Zehnder interferometer

Alternatively to the Mach-Zehnder interferometer one can also use a Fabry-Perot interferometer to
measure the frequency noise of a laser. The frequency dependent transmission of a cavity can be used to
detect frequency fluctuations as fluctuations in the transmitted power. The idea is to lock the cavity to
the side of one of the characteristic transmission fringes and approximate the fringe with a linear slope
(see left plot in Figure 4.8).

The setup is more simple, since the light of the laser is directly coupled into the cavity and the
transmission is recorded on a photodiode (see Figure 4.7). The cavity length is stabilized to a fixed
length with a feedback loop measuring the transmitted intensity. One of the cavity mirrors is mounted
on a piezo electric crystal, that is controlled by applying a voltage tuning the length of the cavity. The
transmitted intensity is measured with an amplified photodiode and the signal is fed into a PID-controller.
The slow output of the controller drives the piezo electric crystal holding the mirror inside the cavity.

Simultaneously, the signal from the photodiode is recorded on a spectrum analyzer to measure the
noise spectrum of the laser.

To do a calibration measurement one has to connect a function generator to the piezo mirror and feed
in a saw-tooth signal. The transmission signal is recorded on an oscilloscope. The left plot in Figure 4.8
shows the transmission fringes of the Fabry-Perot interferometer. The x-axis is then recalibrated by using
the Free Spectral Range of the cavity [69]

Δ𝜈FSR =
𝑐

2𝑛𝐿
, (4.23)

where 𝑐 is the speed of light, 𝑛 is the refractive index inside the cavity and 𝐿 is the distance between the
two mirrors. As there are even and odd modes present the distance between two interference fringes
corresponds to Δ𝜈FSR/2.
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Figure 4.8: Example of a frequency noise measurement using the Fabry-Perot interferometer. (Left) Calibration
measurement trace (yellow), where the voltage is applied to the piezo mirror is scanned linearly using a saw-tooth
signal. The trace shows the characteristic transmission fringes of a Fabry-Perot interferometer. A function
consisting of three Lorentzian peaks (brown) was fitted to the interferometer signal. The dashed line (orange)
marks the maximum slope of the interference fringes. This corresponds to the locking point of the feedback loop.
(Right) Measured noise spectrum of the locked probe laser. The spectrum was measured for different settings of
the FALC than described in section 3.3.

After recalibration, the transmission signal is fitted with Lorentzian peaks of the form

𝑓 (𝜈) = 𝐴

1 +
(
(𝜈−𝐵)
0.5𝐶

)2 (4.24)

where 𝜈 is the laser frequency and 𝐴, 𝐵, 𝐶 are fitting parameters determining the height, position and
width of the peak.

The feedback loop is tuned such that the locking point is at the steepest part of the interference fringe
(see dashed line in left plot of Figure 4.8). At the locking point the relation between the frequency and
the transmitted intensity is approximately linear with a slope of

�̃� =
d𝑈
d𝜈
. (4.25)

With the calibration in place, one can then measure the frequency noise of the laser light. For that the
feedback loop is activated, and the transmitted intensity is recorded. Similarly to the Mach-Zehnder
interferometer, one obtains the voltage power spectrum 𝑆𝑈;𝑖 as described in Equation 4.17. To transform
this into the frequency noise power 𝑆𝜈 , spectrum one uses

𝑆𝜈;𝑖 =
1
�̃�

2 𝑆𝑈;𝑖 (4.26)

To distinguish noise in the laser power from frequency noise one shines the laser light on the directly on
the photodiode to perform a background measurement. The recorded background spectrum is subtracted
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from the measured noise spectrum of the laser.
The right plot in Figure 4.8 shows a measured frequency noise spectral density of the probe laser after

the background correction. The spectrum is more noisy than the measurement shown in Figure 4.6,
which results from averaging over less data points. The drop in the spectrum at 10 MHz is an effect of
cable reflections, the impedance was not properly matched.

The choice of the cavity is crucial for the precision of this method: The finesse F determines how
narrow the peaks in the transmission signal are A higher Finesse increases the slope and therefore
the sensitivity of the setup, but also reduces the frequency range where the linear approximation is
valid. In the measurement shown in Figure 4.8, the cavity had a Finesse of F ≈ 60 and a Free Spectral
Range of Δ𝜈FSR = 1.5 GHz. Thus, the full width at half maximum of an interference fringe is given by
𝜈FWHM =

Δ𝜈FSR
F ≈ 25 MHz [69].

Compared to the Mach-Zehnder interferometer, the Fabry-Perot interferometer is only usable for a
narrow range of wavelengths, which is limited by the high-reflectivity coatings. The interferometer
used in the measurement shown in Figure 4.8 was only suitable to be used for 780 nm and therefore the
frequency noise of the control laser with the seed laser wavelength of 960 nm could not be measured
with this method. Also, one needs to tune the frequency of the laser to be close in frequency to one
of the cavity transmission peaks, which is not possible for every laser and depends on the given setup.
Overall the Mach-Zehnder interferometer turned out to be the superior device to measure the frequency
noise of the probe and the control laser.
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CHAPTER 5

Influence of Frequency Noise the Two-Photon
Rydberg Excitation

As shown in Chapter 2, laser noise influences the coherent interaction between few photons and a
Rydberg superatom.

In this chapter, I present how the frequency noise of the two excitation lasers impacts the dephasing of
superatom Rabi oscillations. In a first step the frequency noise power spectral densities of the probe and
control laser are analyzed. To give an estimate of the expected dephasing rate 𝛾𝜈 (see Equation 2.39)
a simulation of the superatom driven by a noisy light field is performed. Finally, Rabi oscillation
measurements for different noise spectra and Rabi frequencies are compared with the simulation results
to understand the characteristics of this dephasing mechanism.

5.1 Measured Frequency Noise Spectra of the Probe and Control laser

The frequency noise power spectral densities of the probe and control laser are measured using the
scheme described in Chapter 4. For each of the lasers the three different noise spectra were recorded:
First the free-running laser with no feedback loop for frequency stabilization (Unlocked). This is the
intrinsic frequency noise of the laser. Secondly, the spectrum of the laser light is measured with the
frequency stabilization activated and the optimal settings of the FALC (see Table 3.1). With these
settings the maximum bandwidth of the feedback loop is achieved, leading to a suppression over the
largest range of noise frequencies possible. Third, the spectrum of the laser was measured for worsened
settings of the FALC (see Table A.1) reducing the bandwidth of the feedback loop.

All spectra shown in this chapter are limited to noise frequencies between 5 kHz and 10 MHz since
this is the optimal working range for the interferometer. The lower boundary is given by the stabilization
of the interferometers internal stabilization and the upper boundary is the suppression effect, which
cannot be perfectly compensated for (see Figure 4.6).

5.1.1 Probe Laser

Figure 5.1 shows the observed frequency noise power spectral densities observed of the Probe laser for
the free-running, optimally locked and worsened locked cases. In the following the characteristics of
these spectra will be analyzed using the probe laser as an example.
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Figure 5.1: Measured frequency noise power spectral density for different feedback loop configurations of the probe
laser. When the laser is free-running or unlocked (orange) one measures the intrinsic frequency noise of the laser.
The optimal case (brown) shows the laser frequency noise for closed feedback loop with the setting from Table 3.1,
which is the setting that is normally used in the experiment. The third curve (yellow) shows the frequency noise
power spectral density, for the FALC configuration from Table A.1 where the bandwidth of the feedback loop was
intentionally reduced. The gray dashed line shows function Equation 5.1 fitted to the free-running spectrum.

In the free-running case one observes the pure intrinsic frequency noise of the laser diode. To quantify
whether that has the predicted 1/ 𝑓 -shape (see section 3.3) a function of the form

𝑦( 𝑓 ) = 𝑎

𝑥
𝑏

(5.1)

is defined, where 𝑎 and 𝑏 denote fitting parameters. Equation 5.1 is fitted to the free-running spectrum
between 5 kHz and 100 kHz (see gray dashed line in Figure 5.1), to avoid fitting the dent at 100 kHz. The
fit leads to 𝑎 = 2.28(7) × 1010 Hz2/Hz and 𝑏 = 1.184(4). Therefore, in the fitting range the free-running
spectrum approximately resembles the expected 1/ 𝑓 -shape. The dent at 100 kHz indicates that the
1/ 𝑓 -noise has a limited bandwidth.

Comparing the two spectra of the frequency locked laser to the spectrum of the free-running laser
one the suppression effect of the feedback loop becomes visible: The lock reduces the frequency noise
below 200 kHz by several orders of magnitude. However, this also gives rise to the servo bump: The
feedback loop amplifies the intrinsic laser noise leading to the spectrum exceeding the intrinsic noise.
An amplification happens, if the feedback loop response has a phase delay of 90° or more and a gain that
is larger than 1. At a phase delay of 180° feedback loops response is in phase with the noise and the
amplification is maximal and for a gain > 1 the system begins to oscillate and becomes unstable [70].
For the optimal FALC setting the servo bump maximum is at ∼1.1 MHz, while for the worsened settings
is at ∼450 kHz.

As the feedback loop and its components is too slow to compensate for fast fluctuations the phase lag
increases rapidly at high frequencies (e.g. see Figure 3.4). In order to prevent the feedback loop from
amplifying the high-frequency noise components leading to resonant behavior of the system the gain is
chosen to be small at high frequencies. Therefore, the feedback loop neither amplifies nor compensates
in the high-frequency regime (roll-off) [53, 65]. Thus, one observes that the spectra of the both locked
and the free running measurement converge at around 10 MHz.

To change the noise spectrum of the laser in the locked case from the optimal setting to the worsened
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Figure 5.2: Measured frequency noise power spectral densities of the control laser. When the laser is free-running
(unlocked) one measures the intrinsic frequency noise. The optimal case (brown) shows the laser frequency
noise for closed feedback loop with the setting from Table 3.1, which is the setting that is normally used in the
experiment. The third curve (yellow) shows the frequency noise power spectral density of the probe laser, when
the location of the servo bump was intentionally shifted towards lower frequencies (settings from Table A.1). The
gray dashed line shows function Equation 5.1 fitted to the free-running spectrum.

setting the Fast Limited Integrator (FLI) and the Main Gain was changed. The setting of the FLI
was changed from setting “1” to “3”. Thereby the FLI is now turned on with the corner frequencies
𝑓1 = 300 kHz and 𝑓2 = 3.5 MHz. This causes an additional phase lag, compared to the optimal case,
between 𝑓1 = 300 kHz and 𝑓2 = 3.5 MHz Therefore, the phase delay of 90° of the total feedback loop is
reached at lower frequencies. Lifting the overall gain profile by increasing the Main gain from “0.6” to
“0.7”. This means that a Closed-loop gain of > 1 is met at lower frequencies. This reduces the location
of the servo bump further. The corner frequency settings and calculated Bode plots of the worsened
FALC settings can be found in the appendix at section A.2.

5.1.2 Control Laser

The control laser light has a wavelength of 480 nm cannot be used with the optical fiber and polarization
optics built into the interferometer setup. To circumvent this problem the laser light coming from the
tapered amplifier before being frequency-doubled in the internal second-harmonic-generation cavity
was measured. Thereby, Figure 5.2 shows the measured frequency noise spectrum of the control lasers
960 nm. The spectrum of the 480 nm light is expected be proportional to the presented spectrum, but
amplified by factor 4 due to the frequency doubling.

In the free-running case one can, as for the probe, observe the intrinsic frequency noise of the laser.
To characterize that, a function of the form Equation 5.1 is fitted to the data (see Figure 5.2) leading to
𝑎 = 4.7(2) Hz2/Hz (height) and 𝑏 = 5.0(3) × 10−2. Thus, the frequency noise of the control laser has a
significantly lower slope than the expected 1/ 𝑓 . This might be a characteristic of the laser diode built
into the control laser. Also, several peaks appear in the frequency regime between 5 kHz and 50 kHz,
which could be due to outer perturbations or imperfect current driving electronics.

To move the servo bump from the optimal setting of ∼1.1 MHz the Fast Limited Integrator (FLI), the
Fast Limited Differentiator (FLD) and the Main Gain were used. The corner frequencies of the FLI were
shifted from 𝑓1 = 6.5 kHz and 𝑓2 = 80 MHzs to 𝑓1 = 65 kHz and 𝑓2 = 800 MHz shifting the phase lag
induced by the FLI towards higher frequencies. The corner frequencies of the FLD were shifted from
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𝑓1 = 1 MHz and 𝑓2 = 190 kHz to 𝑓1 = 2.3 MHz and 𝑓2 = 420 kHz. In this way the phase lead of the
FLD is shifted towards higher frequencies. Overall this means, that the phase lag of the controls Fast
Analog Linewidth Control (see Figure 3.4) is increased and shifted to higher frequencies. By turning the
main gain from ∼“0.3” to ∼“0.2” the overall gain profile of the feedback loop is lowered, which shifts
the servo bump to ∼500 kHz. The corner frequency settings and calculated Bode plots of the worsened
settings of the FALC are in the appendix at section A.2.

5.2 Bode’s Integral Formula

In Equation 3.19 the sensitivity function was introduced, which describes the suppression of noise
introduced at the lasers output in the closed loop. Bode’s Integral formula puts a fundamental
mathematical restriction on the sensitivity function 𝑆 [53]∫ ∞

0
log |𝑆(𝑖𝜔) |d𝜔 = 𝜋

∑︁
𝑝𝑘 (5.2)

where 𝜔 denotes the frequency and 𝑝𝑘 denote the poles in the right half-plane of the open loop transfer
function 𝐿 (𝑠) = 𝑇laser(𝑠) · 𝑇FALC(𝑠) · 𝑇FRM(𝑠). This relation is only valid if the open Loop transfer
function 𝐿 (𝑠) goes to 0 with at least 1/𝑠2 in the Laplace plain. Since all components in the feedback
loop have a limited bandwidth, and we know that the amplification in the transfer function of the FALC
and the laser go to 0 for large frequencies we can assume that this is fulfilled. Using the definition of the
sensitivity function from Equation 3.19 one can deduce:

𝑆(𝑖𝜔) = 𝑍 (𝑖𝜔)
𝑁 (𝑖𝜔) =

∫ ∞
0 𝑒

−𝑖𝜔𝑡
𝑧(𝑡)∫ ∞

0 𝑒
−𝑖𝜔𝑡

𝑛(𝑡)
(5.3)

where 𝑛(𝑡) and 𝑧(𝑡) are traces of the noise and the output signal in time. Thus, 𝑁 (𝑖𝜔) and 𝑍 (𝑖𝜔)
correspond to Fourier transforms of those which is similar to the measured noise spectra 𝑆𝜈,unlocked and
𝑆𝜈,locked. This is however only accurate if the frequency fluctuations are the only sources of noise in
the feedback loop (ignoring e.g. electronic noise in the controller). Inserting the recorded spectra into
Equation 5.2 leads to ∫ ∞

0
log

���� 𝑆𝜈,locked

𝑆𝜈,unlocked

���� = 0 (5.4)

if there is no pole in the open loop transfer function 𝐿 (𝑠). Poles in the right half plane correspond to an
unstable system, but since the frequency lock is stable over long times we know that the transfer function
does not have any poles in the right-half plane [71]. The effect of Equation 5.4 can be understood as a
“waterbed effect”, where reducing the frequency noise in a certain frequency regime always causes the
increase of the noise in another frequency regime by the feedback loop.
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Spectrum 𝑓 (𝐴comp) [kHz] 𝐴comp [dBc · Hz] 𝑓 (𝐴amp) [kHz] 𝐴amp [dBc · Hz]
���𝐴amp/𝐴comp

���
Probe

Optimal 5-310 −2.04 × 107 310-2380 6.60 × 107 3.24
Worsened 5-230 −1.86 × 107 230-1060 3.07 × 107 1.65
Control
Optimal 5-238 −2.43 × 107 238-5000 3.64 × 107 1.50

Worsened 5-106 −3.17 × 107 106-5000 4.94 × 107 1.56
Table 5.1: Areas of compensation 𝐴comp and amplification 𝐴amp of the frequency noise in the probe and
control feedback loop. The values were calculated from the spectra shown in Figure 5.1 and Figure 5.2. Each
𝑓 (𝐴comp)/ 𝑓 (𝐴amp) denotes the boundaries for integration.

To check this relation the integral in Equation 5.4 is broken down into two parts∫
𝑆𝜈,locked<𝑆𝜈,unlocked

log
���� 𝑆𝜈,locked

𝑆𝜈,unlocked

����︸                                    ︷︷                                    ︸
𝐴comp

+
∫
𝑆𝜈,locked>𝑆𝜈,unlocked

log
���� 𝑆𝜈,locked

𝑆𝜈,unlocked

����︸                                    ︷︷                                    ︸
𝐴amp

= 0. (5.5)

Integration are 𝐴comp corresponds to the case, where the feedback loop suppresses noise and is compared
𝐴amp, where the feedback loop is amplifying the noise. However, we only consider the spectra shown in
Figure 5.1 and Figure 5.2 and cannot integrate up to infinite frequencies. The results and the integration
boundaries are shown in Table 5.1.

In the case of the probe the result of the integrals is affected by the spectra settling at different heights
for high frequencies. This is not expected and results most likely from a systematic uncertainty. To
compensate for this, only the area of the servo bump should be integrated when calculating 𝐴amp. For
both lock configurations of the probe (optimal and worsened) the area 𝐴amp is significantly larger than
𝐴comp. Therefore, Bode’s integral formula cannot be confirmed with this measurement.

Compared to the measured spectra of the probe beam the difference between these spectra for high
frequencies is significantly smaller as expected due to the roll-off. When comparing the areas 𝐴comp and
𝐴amp between the spectrum of the unlocked and the locked laser one also observes again that 𝐴amp is
larger for the optimal and the intentionally worsened setting of the Fast Analog Controller.

The deviation might have multiple origins here: Firstly, it is not possible to measure the entire spectrum
due to the interferometers feedback loop setting compensating for low frequencies (below 1 kHz) and
the suppression effect of the interferometer at 20 MHz. The difference between the spectra at high
frequencies supports the impression that there might be systematic shift of the spectrum heights leading
to a systematic error. Most importantly is that Bode’s integral formula describes the mathematically
ideal feedback system and therefore rather demonstrates an upper boundary. In the actual feedback loop
the components of the feedback loop introduce additional noise and thus increase 𝐴amp and 𝐴comp.

One has to note here, that the previous calculation compares the change of the noise power spectral
densities on a logarithmic scale. This does not mean that the noise is increased on a linear scale as well.
Typically, when observing frequency noise traces as shown in Figure 4.5, a reduction in the amplitude
factor ∼4 was observed when locking a laser.
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5.3 Stability of the Servo Bump Position

As shown in Figure 5.1 and Figure 5.2 the position of the servo bump can be changed with the settings of
the Fast Analog Linewidth Control. Additionally, the feedback loop is susceptible to outer disturbances.
When performing the measurements of the probe and the control frequency noise power spectral density,
it is observed that the position of the servo bump would occasionally move between measurements.

Figure 5.3 shows the position of the control laser servo bump 𝑓servo measured over a period of 17 hours,
with the FALC set to the worsened settings. At the beginning of the measurements the control laser is
turned on and locked and every 20 s the frequency noise spectral density is measured. Simultaneously,
the temperature 𝑇amb on the laser table, the barometric pressure 𝑝amb and the power that is coupled into
the ULE cavity 𝑃cav are monitored (see Figure 5.3). To extract the movement of the servo bump to each
of the recorded spectrum a curve of the form

𝑎( 𝑓 ) = 𝑎

1 + ( 𝑓 − 𝑏)2/𝑐
· 𝑒𝑑 · 𝑓 (5.6)

is fitted, where 𝑓 denotes the frequency of the noise components and 𝑎, 𝑏, 𝑐, 𝑑 denote fitting parameters.
This model is purely phenomenologically motivated as it resembles frequency noise spectral density
around the servo bump and allows extracting the position 𝑓servo of the servo bump. In Figure 5.3 one can
see how the servo bump is oscillating and drifting in the first hour and then settles at around 500 kHz.
After 12 hours the servo bump then drifts again by ∼30 kHz.

The temperature on the laser table settles after ∼5 hours and then remains constant. The overall change
is ∼0.2 ◦C and does not match the trend of the servo bump position 𝑓servo in time.

Similar observation can be made for the barometric pressure: The change in the pressure is below
1% and does not correspond to the movement of the servo bump. Thus, it can be concluded that the
temperature and the pressure do not significantly contribute to the movement of the servo bump.

Across the measurement period it was observed that the power in the control light used for the
frequency stabilization with the ultra-low-expansion cavity does fluctuate. In total this drift corresponds
to about 0.3% of the total power. A change in the light power affects the height of the error signal going
into the Fast Analog Laser Controller. This is similar to a change of the controllers main gain by 0.3%.
When the control servo bump was intentionally lowered by ∼600 kHz (see Figure 5.2) the main gain
was reduced from 0.3 to 0.2. To estimate an upper boundary for the impact of such a power drift, it is
assumed that the servo bump was only shifted due to the change of the main gain. Extrapolating this
change in the servo position leads to a change of ∼12 kHz if the main gain is changed by 1%, where a
change by 0.2 corresponds to 100%. That leads to the conclusion that due to the power drifts the servo
bump drifts by ∼4 kHz. Since a significantly larger drift is observed, there seem to be more effects
adding up here leading to the shift of the servo bump.

Since the shift in the frequency seemingly does not originate from outer factors monitored, the drift in
the servo bump might originate from a shift of the laser diodes internal noise spectrum. As shown in
Figure 3.5, the frequency emitted by a free-running laser is dependent on the gain profiles of the grating,
the external and the internal cavity. If the e.g. temperature or the current of the diode are changing this
shifts the position of these profiles, which impacts the frequency noise spectrum of the free-running
laser. If the carrier frequency of the laser is closer to the borders of the mode-hop-free tuning range, the
intrinsic frequency noise of the laser is expected to increase [72].

To verify whether this effect is significantly contributing to the drift of the servo bump the frequency
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Figure 5.3: Measured servo bump location of the locked control laser over 17 hours. (First row) This graph shows
the location of the control laser servo bump across the measurement time. Every 20 s the frequency noise spectral
density of the laser was measured and a function of the form Equation 5.6 was fitted to the data to extract the
location 𝑓servo of the servo bump peak. (Second row) Shows the light power of the control laser towards the
ultra-low-expansion cavity. (Third row) The barometric pressure in the laboratory. (Fourth row) Temperature on
the optical stabilized laser table of the Control laser and the ULE cavity. At the same time the temperature is
stabilized with an additional sensor.

noise spectral density of the locked control laser was measured for different single-photon detunings
Δ𝑐. This corresponds to a change of the length of the external cavity of the laser, which only affects the
gain profile of the external cavity. In this way, for each detuning a different region in the mode-hop-free
tuning range is sampled.

The upper row in Figure 5.4 shows the position and the height of the control servo bump for different
detunings. The change of the servo bumps height indicates that the overall noise amplitude changed,
since the feedback parameters remained untouched. A shift in the servo position indicates that the noise
spectrum changed shape change, as the sensitivity function does not change for different detunings.
Therefore, a significant shift in the servo bump is induced from the position of the laser in the mode-
hop-free tuning range. This would explain the drift of the servo bump in the first hours of operation:
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Control

Probe

Figure 5.4: Measurement of the control and the probe servo bump depending on the detuning of the laser. (Left
column) Three measured frequency noise power spectral densities depending on the single photon detuning Δ𝑐

(Δ𝑝) of the control (probe) laser, with the parameters of the feedback loop untouched. (Right) Dependence of the
servo bump location and height on the detuning of the laser. The data is extracted from fitting curves of the form
Equation 5.6 to the measured spectra (as the examples shown in the left column).

After turning on the laser the temperature inside the laser increased shifting the gain profiles of the laser
components leading to differing frequency noise spectra inducing the observed shift in the servo bump.
Still we have no knowledge, on how much the mode-hop-free tuning range actually drifted. Therefore, it
can not be concluded whether this is the dominant effect contributing to the drift of the servo bump
position.

In contrast to the control laser no significant drift of the probe servo bump position was observed,
when doing performing a measurement as in Figure 5.3. To check whether the frequency noise spectrum
of the probe laser also depends on the position of the carrier in the mode-hop-free tuning range, the
probe frequency noise spectral density is measured for different detunings Δ𝑝 over the range of 1 GHz.
The lower row in Figure 5.4 shows the result of this measurement. Compared to the control laser the
shift in the position of the servo bump is smaller (∼100 MHz instead of ∼200 MHz), whereas the height
of the servo bump changes by a factor 4 between the edges and the center of the measurement. The
measurement for different detunings shows that intrinsic noise of the probe laser does depend on the
detuning. As no significant drifts had been observed the internal temperature of the probe laser works
significantly better or the mode-hop-free tuning range of the probe is more stable against temperature or
current drifts.
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5.4 Simulation of a Noisy Two-Photon Rydberg Excitation

To predict and understand the impact of a noisy driving field on single-photon Rabi oscillations a numeric
simulation can be used. In the following section the implementation of such a simulation is outlined and
first features of the frequency noise are investigated using the simulation.

The idea behind the simulation is to calculate the light emitted by the superatom using the effective
Hamiltonian from Equation 2.33 for a driving field with a fluctuating frequency. Multiple iterations of
Rabi oscillations are generated and then averaged. For each single iteration, a noisy laser frequency trace
is generated from the frequency noise spectral densities measured described in section 5.1. In this way
an experimental measurement is simulated, where many iterations are averaged.

As a first step the measured frequency noise spectra of the probe 𝑆𝜈,probe and the control laser 𝑆𝜈,control
need to be combined to one common noise spectrum of the effective driving light field 𝑆𝜈,eff . Therefore,
the measured discrete spectra are summed up for every frequency entry 𝑆𝜈,𝑖

𝑆𝜈,eff,𝑖 = 𝑆𝜈,probe,𝑖 + 4 · 𝑆𝜈,control,𝑖 (5.7)

where the noise spectrum of the control is multiplied by a factor of 4. This factor captures that
the frequency noise spectrum of the control laser was measured before frequency doubling. The
second-harmonic-generation doubles the frequency fluctuations Δ𝜈(𝑡) leading to a factor 4 increase in
the effective spectrum (since Δ𝜈(𝑡) ∝

√︁
𝑆𝜈).

With the total spectrum, frequency fluctuation time series Δ𝜈eff (𝑡) can be constructed and used to put
in the Hamiltonian in Equation 2.33. A single time trace Δ𝜈eff (𝑡) is given by

Δ𝜈eff (𝑡) =
∑︁
𝑖

√︃
2𝑆𝜈,eff,𝑖Δ 𝑓 cos

(
2𝜋 𝑓𝑖𝑡 +Φ 𝑓 ,𝑖

)
(5.8)

where the phases Φ 𝑓 ,𝑖 are randomly drawn between 0 and 2𝜋. This leads to differing frequency traces for
each iteration generation of Δ𝜈eff (𝑡). To have the simulation comparable to the experiment a simulation
length of 10 µs is chosen. This corresponds to the length of the Tuckey pulses driving the Rabi oscillations
as shown in Figure 3.2.

With a fluctuation frequency time trace one can calculate the density matrix of the superatom driven
by a noisy light field. For that, typical values from Rabi oscillation measurements for 𝜅, 𝑅in, Γ and 𝛾𝐷
are used. In the simulation it is assumed that the probe laser is running at one constant level 𝑅in and that
the atomic ensemble is in the ground state |𝐺⟩ at 𝑡 = 0. Using the effective Hamiltonian

𝐻eff (𝑡) = ℏ
√
𝜅(

√︁
𝑅in𝜎𝐺𝑊 +

√︁
𝑅in𝜎

†
𝐺𝑊

) + (𝛿/2 + ¤Φ(𝑡)) (𝜎𝐷𝐷 + 𝜎𝑊𝑊 − 𝜎𝐺𝐺), (5.9)

the time evolution of the superatom density matrix 𝜌(𝑡) developed using qutip.mesolve [37] from the
Lindblad master equation in Equation 2.11. With knowledge of the density matrix one can then calculate
the outgoing light field 𝑅out using Equation 2.13.

This procedure is repeated 300 times and an averaged Rabi oscillation trace is calculated. Figure 5.5
shows a simulation of the outgoing light field for four different input probe photon rates 𝑅in using the
values for 𝜅, Γ and 𝛾𝐷 from the measurement shown in Figure 3.2. The simulation was done using the
optimal frequency noise spectra of the probe and the control laser. One can see how the individual traces
vary significantly over the simulation time. This causes a loss in amplitude in the averaged curve.

To extract the values of 𝛾𝜈 from these curves, the same fitting procedure as for the experimental
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Figure 5.5: Simulated dephasing of superatom Rabi oscillations due to noisy driving fields. For each input power
𝑅in = 10.6, 17.3, 24.0, 31.3 photons per µs(top to bottom) 300 traces were computed. To calculate the frequency
fluctuation the optimal probe and control frequency noise spectral densities were used. The colored traces show the
individual Rabi oscillation traces for randomly generated frequency traces Δ𝜈eff (𝑡). From each set of traces a mean
trace is calculated (light purple) and the fitting model is applied (dark purpled). The fit parameters are in the first
column of Table 5.3. The input parameters for the simulation are 𝜅 = 0.31 MHz, 𝛾𝐷 = 1 1/µs and Γ = 0.4 1/µs.

measurements is applied to the averaged curves. Therefore, out of the four oscillation traces with
differing 𝑅in common values for 𝜅, Γ and 𝛾𝐷 are obtained. 𝛾𝜈 is determined for each trace independently.
The results of the simulation are shown in the first column of Table 5.3.

In principle one would expect that the fitted values for 𝜅, Γ and 𝛾𝐷 do not differ from the initial
values fed into the simulation. As seen in Table 5.3, the values obtained from simulation and experiment
do however differ. This is attributed to correlations between the fit parameters. Table 5.2 shows the
linear correlation coefficients between the fit parameters for the simulation shown in Figure 5.5. The
correlation coefficient 𝐶𝑥𝑦 between two fitting parameters 𝑥 and 𝑦 is given by [73]

𝐶𝑥𝑦 =
cov(𝑥, 𝑦)
𝜎𝑥𝜎𝑦

(5.10)

where cov(𝑥, 𝑦) denotes the covariance between 𝑥 and 𝑦. 𝜎𝑥 and 𝜎𝑦 denote the standard deviations
of 𝑥 and 𝑦. If the correlation coefficient is ±1 this means that both parameters are exactly linearly
dependent on each other (with a positive/negative slope) and if 𝐶𝑥𝑦 is 0 that means that 𝑥 and 𝑦 are fully
uncorrelated [74].
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𝜅 Γ 𝛾𝐷 𝛾𝜈1 𝛾𝜈2 𝛾𝜈3 𝛾𝜈4
𝜅 1.00 -0.43 0.58 -0.26 -0.32 -0.36 -0.38
Γ -0.43 1.00 -0.81 0.40 0.46 0.51 0.54
𝛾𝐷 0.58 -0.81 1.00 -0.50 -0.61 -0.69 -0.73
𝛾𝜈1 -0.26 0.40 -0.50 1.00 0.31 0.35 0.37
𝛾𝜈2 -0.32 0.46 -0.61 0.31 1.00 0.43 0.45
𝛾𝜈3 -0.36 0.51 -0.69 0.35 0.43 1.00 0.51
𝛾𝜈4 -0.38 0.54 -0.73 0.37 0.45 0.51 1.00

Table 5.2: Correlation coefficients of the fit parameters from the simulation shown in Figure 5.5. 𝛾𝜈1 corresponds
to the trace with the lowest input photon rate 𝑅in and 𝛾𝜈4 corresponds to the trace with the highest input photon
rate 𝑅in.

The correlation coefficients on the diagonal are all 1 because cov(𝑥, 𝑥) = 𝜎𝑥𝜎𝑥 . In Table 5.2 the
highest correlation is between Γ and 𝛾𝐷 with 𝐶Γ𝛾𝐷

= −0.89. This means that the fitting model can
poorly “distinguish” between these two. The negative sign in the correlation coefficient shows that if one
of them increases the other one has to decrease.
𝛾𝐷 is also strongly correlated to the frequency noise induced dephasings 𝛾𝜈1, 𝛾𝜈2, 𝛾𝜈3 and 𝛾𝜈4.

Therefore, if frequency noise is introduced in the simulation and the average trace is fitted, the value of
𝛾𝐷 compensates for this dephasing, even though the mathematical rate of atoms transitioning in to the
dark state does not change.

Comparing the averaged and fitted Rabi oscillation traces in Figure 5.5 one can see that the fit is able
to capture the decay of amplitude with a good accuracy. However, the oscillation frequency between the
averaged and the fitted trace seems to differ slightly. This is most clearly visible in the case with the
lowest Rabi frequency of 2𝜋 · 573 kHz. The best agreement in the oscillation frequency is there for a
Rabi frequency of 2𝜋 · 984 kHz. Therefore, the difference between the fit and the averaged trace is also
an effect of the frequency noise of the driving field. This shows that the fitting model from Equation 2.39
is only an approximation and does not capture the dynamics of the superatom exactly.

Using the simulation we investigate the impact of the height and the shape of the frequency noise
spectral densities on the measured frequency noise induced dephasing rate 𝛾𝜈 .

First the dependence of the dephasing rate 𝛾𝜈 on the height of the spectrum is investigated. The total
spectrum is multiplied with a factor 𝛽 and the simulation is performed. The left plot in Figure 5.6 shows
the dependence of 𝛾𝜈 on 𝛽. Overall a linear relation between 𝛾𝜈 and 𝛽 is observed. The fluctuations
in the relation are due to cross-talk between the fit parameters. According to Equation 2.37 𝛾𝜈 scales
quadratically with the frequency Δ𝜈 (𝑡). As Δ𝜈 (𝑡) scales with

√︁
𝑆𝜈 (see Equation 5.8) a linear relation

between 𝛽 and 𝛾𝜈 is expected from the theoretical model.
Secondly, the simulation is used to investigate which frequency noise components contribute most

significantly to the dephasing 𝛾𝜈 . For this procedure is applied: a simulation of Rabi oscillations
is performed for varying Rabi frequencies between 550·2𝜋· kHz and 1100·2𝜋· kHz. For each Rabi
frequency 300 traces are generated with 𝜅 = 0.31 MHz, 𝛾𝐷 = 1 1/µs and Γ = 0.4 1/µs. By averaging
over these traces a mean trace is computed, and the photon signal is fitted using Equation 2.39 to obtain
𝛾𝜈.

The right plot in Figure 5.6 shows the result of this simulation. The dephasing rate 𝛾𝜈 is plotted
against the Rabi frequency Ωeff . One can see that the values for 𝛾𝜈 are strongly fluctuating, which is due
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Figure 5.6: Simulating frequency noise dephasing for different noise powers and detunings. (Left) Simulated 𝛾𝜈 for
different heights of the total noise spectrum. For each data point the total frequency noise spectrum was multiplied
with the factor 𝛽 a simulation averaging over 300 traces was performed with an input photon rate of 𝑅in = 10.3
photons per µs. (Right) Simulated 𝛾𝜈 (brown) for different Rabi frequencies Ωeff plotted with the total frequency
noise spectrum used (orange). Each data point for 𝛾𝜈 is obtained from a Rabi oscillation simulation averaging over
300 traces using the total frequency noise spectral density shown. The spectrum is plotted against is frequency
components 𝑓𝑖 . In both plots 𝜅 = 0.31 MHz, 𝛾𝐷 = 1 1/µs and Γ = 0.4 1/µs were used as initial parameters.

to the high correlation between the fitting parameters and because a single trace is fitted. Comparing the
values of 𝛾𝜈 to the total frequency noise spectral density, one can see that the trend of 𝛾𝜈 approximately
resembles the noise spectrum. This indicates that mainly the noise around the Rabi frequency significantly
contributes to the dephasing. Therefore, to reduce 𝛾𝜈 in the experiment one has to reduce the frequency
noise spectral density of the probe and the control laser at the Rabi frequency.

5.5 Comparing Simulated and Measured Dephasing Rates

In our experiment, we would like to determine how much laser noise of the probe and the control laser
contribute to the overall dephasing in the Rabi oscillations of the superatom. In the previous section the
influence of the noise spectrum was investigated with the help of simulations, which can be directly
compared to experimental measurements.

As it was shown in Figure 5.6 the dephasing 𝛾𝜈 due to frequency noise strongly depends on the height
of the noise spectrum at the Rabi frequency. Therefore, it is expected that the experimentally measured
dephasing rate 𝛾𝜈 depends on the shape of the total noise spectrum. This dependency is investigated by
changing the slope of the total frequency noise spectrum from positive to approximately flat to negative
over the typical range of Rabi frequencies (500 kHz to 1 MHz).

The simulation and the experiment are compared for three different configurations of the total noise
spectrum shown in the top row of Figure 5.7: Column (I) shows probe and control laser in the optimal
setting of their Fast Analog Laser Controller with both servo bumps at ∼1.1 MHz. In column (II) the
probe is at the optimal and control laser is at the worsened setting leading to plateau in the total spectrum
around the Rabi frequencies realized in the experiment. For column (III) the probe and control laser
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Figure 5.7: Comparison the experimental and simulated frequency noise induced dephasing for three configurations
of the noise spectra of the probe and control laser. (Top row) Frequency noise power spectral densities of the
probe (red), control (blue) and the combined effective (black) laser fields. The dashed vertical lines indicate the
Rabi frequencies that probed in the experiment and the simulation the colors correspond to the traces in the middle
row. (Middle row) Traces fitted to the experimentally measured Rabi oscillations. The height corresponds to the
input photon rate 𝑅in. The fit parameters are denoted in Table 5.3. (Bottom row) Comparison between the values
of 𝛾𝜈 obtained from experiment (light purple) and simulation (dark purple) plotted against the Rabi frequency
Ωeff = 2

√︁
𝜅𝑅in.

are at the worsened setting. This leads to a servo bump around 500 kHz and a falling slope between
500 kHz and 1 MHz.

For each configuration the measurement is done for four different probe photon rates 𝑅in (see second
row in Figure 5.7). Each photon rate corresponds to a different Rabi frequency (see dashed lines in the
first row of Figure 5.7). The experimental and simulated values for 𝜅, Γ, 𝛾𝐷 and 𝛾𝜈 are listed in Table 5.3

The last line in Figure 5.7 compares the values for 𝛾𝜈 obtained from simulation and experiment. To
make the simulated Rabi traces comparable to the experimentally measured Rabi oscillations, the values
of 𝜅, 𝛾𝐷 and Γ extracted from the experimental data were used as input variables for the simulation.

Comparing the values for 𝛾𝜈 for the optimal setting of probe and control (I) in simulation and
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Spectrum (I) (II) (III)
Simulation Experiment Simulation Experiment Simulation Experiment

𝜅 [MHz] 0.30583(5) 0.31(1) 0.36220(2) 0.35(1) 0.36742(5) 0.35(1)
Γ [1/µs] 0.4099(2) 0.42(1) 0.4807(2) 0.48(1) 0.3222(2) 0.32(1)
𝛾𝐷 [1/µs] 1.044(2) 0.91(4) 0.961(1) 0.94(6) 1.149(1) 1.16(5)
𝑅in,1 [1/µs] 10.6 10.6 12.2 12.2 10.8 10.8
𝛾𝜈1 [1/µs] 0.2445(4) 0.78(9) 0.712(3) 2.68(17) 0.943(4) 3.29(17)
𝑅in,2 [1/µs] 17.3 17.3 20.0 20.0 17.6 17.6
𝛾𝜈2 [1/µs] 0.499(4) 0.89(8) 0.561(3) 1.77(13) 0.678(4) 2.91(14)
𝑅in,3 [1/µs] 24.0 24.0 27.8 27.8 24.5 24.5
𝛾𝜈3 [1/µs] 0.555(4) 1.27(8) 0.379(2) 1.28(11) 0.443(3) 2.59(12)
𝑅in,4 [1/µs] 31.3 31.3 36.2 36.2 32.0 32.0
𝛾𝜈4 [1/µs] 0.749(4) 2.13(9) 0.278(2) 1.30(10) 0.297(2) 2.08(10)

Table 5.3: Fitting parameters obtained from experimental and from simulated data. The corresponding noise
spectra of the probe and the control laser are shown in Figure 5.7. For the simulated data the values for 𝜅, Γ and
𝛾𝐷 were used as corresponding starting values. The rates of probe photons were measured in photons per µs

experiment, one notes that the dephasing 𝛾𝜈 is increasing as expected due to the total frequency noise
spectrum in the top row. However, there is an offset between experimentally obtained and the simulated
values. Additionally, the experimental values increase more rapidly with the Rabi frequency than the
simulated values for 𝛾𝜈 .

In the other two cases of the flat (II) and falling (III) total noise spectrum one makes a similar
observation: Both experiment and simulation show the same trend in 𝛾𝜈 but the experimentally obtained
values are significantly higher.

The matching trends between the experimental and the simulated data show that the frequency noise
induced dephasing 𝛾𝜈 is a significant effect contributing to the dephasing of the Rabi oscillations. The
fact that the effect changes depending on the total noise spectrum confirms, that this is not just another
e.g. power-dependent dephasing effect.

This difference between the simulated and the experimentally obtained values for 𝛾𝜈 can have multiple
origins: In the fit obtained from the simulation in all cases either the value for 𝛾𝐷 or 𝜅 increased
compared to the experimentally obtained value. This reduces the obtained values for 𝛾𝜈 as the correlation
coefficients of 𝛾𝐷 and 𝜅 with 𝛾𝜈 are all negative (see Table 5.3). The cross-talk between the fitting
parameters also applies to the evaluation of the experimental data.

Also in the simulation, the frequency noise spectra of probe and control are expected to be static. This
is not accurate on long time-scales (see Figure 5.3). Since the experimental measurements are performed
over several hours to collect good statistics, a slow drift in the servo bump of the probe or control laser
can impact the measurement result. This causes an averaging over different rates of 𝛾𝜈 resulting in an of
the measured values of 𝛾𝜈 .

The measurements shown in Figure 5.7 experiment confirms, what the simulation already suggested:
If one wants to reduce the dephasing due to frequency noise, the total frequency noise spectral density
has to be reduced at the Rabi frequency Ωeff of the Rabi oscillations. In the experiment these are typically
between 2𝜋 · 500 kHz and 2𝜋 · 1 MHz.

One approach for a reduction of dephasing could be to increase the speed of the feedback loop. This
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would shift the servo bump towards higher frequencies and reduce the noise at the Rabi frequencies.
Such improvements are fundamentally limited by the bandwidth of the feedback loops components,
especially the laser, and the cables between the components, which are already reduced to the minimum.

Another approach could be to intentionally reduce the bandwidth of the feedback loop, such the servo
bump is shifted to a position much lower than 500 kHz. For a slower feedback loop these noise spectra
between 500 kHz and 1 MHz resemble the free-running laser. Therefore, the improvement is limited by
the intrinsic frequency noise of the probe and control laser. As the noise spectrum of the free running
laser is falling for increasing frequencies, the dephasing would still be dependent on the Rabi frequency.
Additionally, the stability of the lock suffers from the reduction of the bandwidth.
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CHAPTER 6

Conclusion & Outlook

The goal of this thesis was to assess whether frequency noise of the probe and the control laser significantly
contributes to the dephasing of Rydberg superatom Rabi oscillations measured in the RQO experiment.

In the first part of this thesis, the effect of frequency fluctuations in of optical field driving a two-level-
system were discussed. We showed that the frequency fluctuation can be treated as a variation in the
detuning of the driving field. When averaging over many experimental realizations, these frequency
fluctuations can be approximated in the Lindblad Master equation as an additional term 𝛾𝜈

2 L(𝜎𝑊𝑊 ). The
term describes the loss of coherence between the ground state |𝐺⟩ and the bright state |𝑊⟩. Therefore,
this dephasing effect is fundamentally different from e.g. thermal dephasing, since other effects describe
a transition from the from |𝑊⟩ to the manifold of dark states {|𝐷⟩}.

Afterward, it was described how the superatoms are realized experimentally and how the lasers driving
the superatoms are stabilized in their frequency. The latter is crucial in the context of this thesis as the
frequency stabilization loop determines the noise spectra of the probe and the control laser.

In order to measure the frequency noise spectra of the probe and control laser a laser noise interferometer
was constructed in the scope of this thesis. With the interferometer, it is possible to obtain the frequency
noise power spectral density of a laser between ∼1 kHz and ∼10 MHz, which is the relevant range for the
dephasing of Rabi oscillations. The interferometer can not only measure the probe and the control laser,
but any laser with a wavelength between ∼770 nm and ∼1000 nm.

With knowledge of the probe and the control frequency noise spectra, the impact of the frequency noise
on the Rabi oscillation signal was simulated by approximating the dephasing numerically. Comparing
the simulation and the experimental results it was possible to show that the frequency noise plays a
significant role in the dephasing of the Rydberg superatom. A key observation from the simulation was
that the height of the total noise spectrum at the Rabi frequency determines the dephasing rate 𝛾𝜈 and
noise at frequencies far away from the Rabi frequency barely contribute.

In the experiment, we use Rabi frequency in the range between 2𝜋 · 500 kHz and 2𝜋 · 1 MHz. In the
case of the optimal frequency stabilization, the probe and the control laser have their servo bump at
∼1.1 MHz. Because the total frequency noise spectrum has a rising slope between 500 kHz and 1 MHz,
the dephasing 𝛾𝜈 increases with the Rabi frequency, leading to varying values for 𝛾𝜈 depending on the
strength of the driving field 𝑅in.

Manipulating the frequency noise spectra of the probe and the control laser led to a falling slope in the
total frequency noise spectrum. This allowed inverting the trend of dephasing rate 𝛾𝜈 such that it then
decreases with growing 𝑅in. This proofed the observed dephasing is indeed due to the frequency noise
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of the excitation lasers.

6.1 Outlook

In order to increase the coherence time of the Rabi oscillations, one has to reduce the frequency noise
of the excitation lasers for noise frequencies between 500 kHz and 1 MHz. To reduce the frequency
noise in this range, one could make the feedback loops either significantly faster or slower pushing the
servo bump of the probe and the control laser away from the Rabi frequencies. In order to increase the
bandwidth of the feedback loop, one could replace the FALC controller by a controller that is capable of
producing a larger phase lead at high frequencies.

The interferometer setup presented in this thesis was used to measure the frequency noise of the
excitation lasers to gain insights in the frequency noise induced dephasing of the Rydberg superatom.
The setup could also be used to actively suppress the noise using a feed-forward line. In reference [43],
such a setup has already been implemented. In the setup the light from a diode laser is broken down into
two arms. One arm contains a fiber-based interferometer, which is similar to the one presented in this
thesis. The interferometer is used to measure the frequency noise in real-time. The light in the second
arm is delayed with an optical fiber and then sent through an Electro-Optical-Modulator (EOM). The
signal from the interferometer sent into the EOM which counteracts the frequency fluctuations in the
laser light. With this method, it is possible to suppress the laser frequency noise by more than 20 dB in
the frequency range between 1 MHz and 10 MHz. As the frequency noise induced dephasing 𝛾𝜈 scales
approximately linearly with the height of the noise spectrum, with an active noise suppression by 20 dB
we would be able to reduce the frequency noise induced dephasing by a factor up to 100. This would
bring a significant improvement in the coherence time of the superatom.
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Appendix

A.1 Superatom Dephasing due to Inhomogeneous Density of the
Atomic Cloud
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Figure A.1: Measurement of the density induced dephasing. Rabi oscillation measurements with the for the
89𝑆-state of Rubidium-87 with a detuning of 200 MHz were performed while varying the atomic density. A
description of the measurement procedure and atom preparation scheme to obtain 𝛾𝐷 can be found in section 3.2.
The atom number and temperature of the atomic cloud was measured with absorption images of the atomic cloud
expansion (for a detailed explanation see [17]). With knowledge of the trapping beam parameters (powers and
detuning) the atomic density distribution can be obtained. The atomic density is modified by varying the power of
the Repumper beam to change the number of loaded atoms. To rule out differential light shifts affecting trend of
𝛾𝐷 all experiments were performed with the same trapping conditions. Between the measurements the temperature
of the atomic ensemble differs by less than 5%, such that it is assumed that thermal dephasing does not influence
the trend of the data points.

This measurement investigates whether inhomogeneous density increases the dephasing of the superatom.
In the experiment Rabi oscillations were measured for different densities of the atomic cloud (see
Figure A.1). The dephasing rate 𝛾𝐷 is plotted against the weighted atomic density �̄� in the case where the
Rydberg atom is sitting in the center of the atomic trap. If the peak density is increased this corresponds
to an increase of the overall density induced shift over the atomic cloud or detuning “seen” by the atoms.
As shown in the example for the differential light shift the decay rate 𝜏𝑑𝑙 scales with the detuning. Thus,
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a linear relation between �̄� and the dephasing rate 𝛾𝐷 is expected.
To verify this expectation a linear fit function was fitted to the recorded data points. The fit seems to

capture the overall trend of the data points, however due to the big errors on the density and the few
data points in the measurement is not conclusive. A positive y-axis intercept is expected and captures
the contribution of the other dephasing mechanisms. Therefore, this effect does indeed contribute
significantly to the dephasing 𝛾𝐷 .

A.2 Worsened Feedback Loop Settings

Control Probe
𝑓1 𝑓2 𝐾 𝑓1 𝑓2 𝐾

XSLI - - 1 - - 1
SLI 2.4 kHz 140 kHz 1 1.1 kHz 65 kHz 1
FLI 65 kHz 800 kHz 1 300 kHz 3.5 MHz 1
FLD 2.3 MHz 420 kHz 5 1 MHz 190 kHz 5

Table A.1: Set corner frequencies of the Main branch of the Fast Analog Laser Controller of the probe and the
control beam for the intentionally lowered servo bump. In both cases the XSLI was turned off.

60



Appendix A Appendix

Probe 

Control

Figure A.2: Open-loop Bode plots of the Fast Analog Linewidth Control of the probe and control laser for the
settings from Table A.1. The transfer functions of the Extra Slow Limited Integrator (XSLI), Slow Limited
Integrator (SLI), Fast Limited Integrator (FLI) and the Fast Limited Differentiator (FLD) were calculated using
Equation 3.8 to produce the phase and amplitude relation between in- and output of each component. The transfer
function of the Extra Slow Limited Integrator is not plotted here as it is turned off. The total transfer function
(light purple) was calculated from the product of the components’ transfer functions. In the calculation the limited
bandwidth of the controller was neglected.
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