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CHAPTER 1

Introduction

The idea that quantum computers could solve computational task exponentially faster than a classical
computer was proposed by Richard Feynman in the early 1980s [1]. His work laid the foundation for a
rapidly growing research field, which explores how quantum phenomena can be used to achieve significant
performance improvement over classical technologies [2]. Quantum computing and quantum technology
in general have a wide range of applications, including secure communication [3], high-precision
sensing [4], machine learning [5], chemistry [6], and many more [7, 8]. A variety of quantum hardware
platforms exist, ranging from trapped ions [9], photonic systems [10] and neutral atoms [11, 12] to
superconducting circuits [2]. To profit from the strength of different platforms while mitigating their
limitations, hybrid systems that combine two or more quantum platforms have been proposed [13]. The
goal is to create implementations that can store, process and transfer quantum information [14].

The Hybrid Quantum Optics (HQO) experiment in the Nonlinear Quantum Optics research group of
Sebastian Hofferberth investigates a novel hybrid system between an electromechanical oscillator and
Rubidium Rydberg atoms.

Rydberg atoms, which are highly excited atoms with long coherence times [15], are promising
candidates for hybrid systems. They possess strong electric dipole transitions over a large range of
the electromagnetic spectrum [12], with optical transitions between ground and Rydberg states and
transitions in the microwave regime between adjacent Rydberg states [15].

Electromechanical oscillators are often used in hybrid systems, since they have high quality factors
of up to 108 [16, 17], long coherence times [13], and couple to microwaves [16, 18]. These properties
make them suitable for microwave-to-optics transduction [19], quantum acousto-dynamics [16] and
fundamental research of the boundary of classical and quantum systems [20].

The first goal of the HQO experiment is to cool down one vibrational mode of a high-overtone bulk
acoustic resonator (HBAR) to its quantum mechanical ground state via interaction with Rubidium
Rydberg atoms. By bringing the Rydberg atoms close to the HBAR, which will be placed on an atom
chip, it will be possible to exchange microwave photons with the Rydberg atoms via dipole interactions.
The coupling between HBAR and Rydberg atoms will enable the optical control and readout of the
HBAR.

The experiment has to be conducted in a cryogenic environment to reduce the initial thermal occupation
of the HBAR. To prevent laser induced heating and to improve the vacuum in the cryogenic region,
the atom loading is performed in a separated vacuum chamber. This requires the transport of the
atom cloud from the loading chamber to the science chamber, hosting the HBAR. In the scope of this
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Chapter 1 Introduction

thesis the cold atom preparation sequence, including loading and transport of the atom cloud, was
optimized. Furthermore, the Rydberg ion detection setup was characterized to determine the detection
efficiency. At the time of this thesis the cryostat was not yet implemented into the setup, meaning that
only measurements at room temperature were possible.

For the optimization of the preparation sequence a machine learning online optimization method,
based on the python package M-LOOP [21], was employed. Machine learning (ML), as a subfield of
artificial intelligence [22], is a continuously growing field with already significant impact across a wide
range of application, including industry [23, 24], medicine [25, 26] and science [27–29]. It is based
on the development of algorithms that learn, purely from data, about patterns within complex systems,
with the goal to predict the system’s future behavior and to enable informed decision-making [22]. ML
algorithms have already become a common tool in physics for processing large datasets, for example in
particle physics [30] or cosmology [31], where they are widely used for classification and regression
tasks [29]. Beyond applying ML algorithms after a complete dataset was generated, online machine
learning methods are increasingly being used to optimize ultra-cold-atom experiments in real time [21,
32, 33]. The advantage of online machine learning is that the algorithm learns about the experimental
system during the process of generating new data, enabling it to make informed decisions about which
experimental parameters to test next, thereby significantly improving the efficiency and speed of the
optimization process [21]. The algorithm builds an internal model of the system which is continuously
improving by receiving real time feedback on its predictions, despite having no prior knowledge of the
experiment [21, 32, 34]. This makes machine learning optimization well suited for the optimization of
complex experimental setups with unknown perturbations [33], sometimes even leading to unexpected
optimization results with significant improvement [34].

In this thesis, the machine learning online optimization routine was implemented into the HQO
experiment and applied to the optimization of the magneto-optical trap (MOT), as a proof of principle
application, and the magnetic transport, for optimizing a complex system with a large optimization
parameter space.

The structure of this thesis is as follows. At first the experimental setup and sequence for the preparation
of the Rubidium Rydberg atoms is introduced in Chapter 2. Chapter 3 provides an overview of the general
principles of machine learning online optimization and its implementation in the M-LOOP Python
package. Next, the integration of the machine learning optimization cycle into the HQO experiment
is discussed in Chapter 4. Furthermore, this chapter outlines the specific realization of the MOT and
magnetic transport optimization, and discusses the results. Chapter 5 explains the ion detection setup in
more detail and discusses the characterization measurements for this setup. Finally, Chapter 6 provides a
summary of the optimization and characterization conducted in this thesis for the Rubidium Rydberg
preparation and detection in the HQO experiment.
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CHAPTER 2

Experimental Setup and Sequence

This chapter provides an introduction to the experimental sequence and setup in the HQO experiment.
First, a brief overview is presented. Next the different experimental steps composed of initial cold
atom preparation (see Section 2.1), magnetic transport (see Section 2.2) and Rydberg excitation and
detection (see Section 2.3) are discussed in more detail. Additionally, the experiment control system,
which controls the different experimental steps, is introduced in Section 2.4.

The full experimental setup required to realize the desired hybrid system is shown in Fig. 2.1. It is
composed of four parts: the MOT vacuum chamber for the initial cold atom preparation; the science

Figure 2.1: CAD drawing of the full experimental setup. It consists of the MOT chamber, where the Rubidium
atoms are initially prepared, the science chamber, where the actual experiment takes place and the magnetic
transport connecting both chambers. The cryostat will enable experiments in a cryogenic environment in the future.
At the time of this thesis, experiments could only be conducted in the setup shown without the cryostat. This is
referred to as the ’room temperature setup’. The coordinate system on the left describes the laboratory system
which will be used as reference system throughout this thesis.
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Chapter 2 Experimental Setup and Sequence

Figure 2.2: The experimental sequence for experiments in the room temperature part of the setup. The atoms
are initially prepared in the MOT chamber, where they are at first trapped and cooled down in a magneto-optical
trap. After this an optical molasses phase is performed for cooling to sup-Doppler temperatures. Next the atoms
are optically pumped to a low field seeking state, to be able to trap them in a magnetic field. After this they are
magnetically transported to the science chamber where the Rydberg excitation and detection takes place. The
𝑥-axis shows the duration of the steps, 𝑇MT describes the magnetic transport time which is either chosen as 1.5 s or
2 s.

chamber, which is an ultra-high vacuum chamber hosting the atom chip; a magnetic transport connecting
both vacuum chambers; and the cryostat. The cryostat will be attached to the science chamber to enable
experiments in a cryogenic environment. However, the cryostat was not yet included in the setup at
the time of this thesis. Therefore, all optimizations and characterizations were conducted in the room
temperature part of the setup. The two chamber design was chosen to prevent laser induced heating
in the cryogenic region during the initial cold atom preparation. The Rubidium atoms, specifically the
isotope 87Rb, are loaded from Rubidium background gas in the MOT chamber and then transported
to the science chamber, where the actual experiment will take place. Due to this loading process, the
pressure in the MOT chamber is higher than required for the science chamber. Using a differential
pumping tube between both vacuum chambers separates the MOT chamber with relatively high pressure
of around ∼ 10−9 mbar from the science chamber at ultra-high vacuum of around ∼ 10−10 mbar. The
Rubidium background gas is produced by heating up a broken Rubidium ampulla connected to the MOT
chamber. For more information about the Rubidium atom source in this experiment see Johanna Popp’s
Master’s thesis [35]. Minimizing the heating effects in the science chamber is also why a magnetic
transport is used to connect both chambers instead of an optical transport, which could be realized, for
example, with a movable optical lattice [36].

The experimental sequence in the room temperature setup is summarized in Fig. 2.2 and can be
divided into three parts. At first the atoms are trapped in the MOT chamber and initially cooled down in
a magneto-optical trap and subsequent optical molasses phase. To prepare the atoms for the magnetic
transport they also need to be optically pumped into a low field seeking state. The initial cold atom
preparation in the MOT chamber is explained in more detail in Section 2.1. In the next step the atoms are
magnetically transported to the science chamber where the Rydberg excitation and detection take place.
The working principle of the magnetic transport and the realization in the experiment are discussed in
Section 2.2. The Rydberg excitation and detection sequence can be found in more detail in Section 2.3.

Furthermore, an absorption imaging system is built around the MOT chamber and the science chamber.
For the MOT chamber the absorption imaging is conducted along the 𝑥-axis, for the science chamber it is
conducted along the 𝑦-axis. The orientation of the axes are defined by the coordinate system in Fig. 2.1,
which will be used as reference throughout the thesis. Absorption imaging can be used to characterize
the properties of a trapped ultracold atom cloud by illuminating the atoms with a resonant and collimated
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Chapter 2 Experimental Setup and Sequence

laser beam and detecting the transmitted light. In the experiment this is realized by taking three images.
The first one is the shadow image, where the atoms are trapped in the chamber and illuminated with
the imaging light. After this a laser image without any atoms in the beam path is taken. This captures
the undisturbed laser beam. The third image is a background image with the imaging light turned off
and no trapped atoms. From this measurement it is possible to determine the 2D column density of
the atom cloud. By integrating over the column density the atom number can be extracted [37]. If the
density distribution of the atom cloud can be assumed to be Gaussian, one can extract the cloud width 𝜎
(FWHM) and the center position of the cloud (along the axes of the imaging plane) by fitting Gaussian
distributions along both axes [37].

The absorption images are taken after a fixed time of flight (TOF). The time of flight is a free evolution
time for the atoms, during which the trapping potential is turned off. If not stated otherwise, the time
of flight is set to 10 ms here. This ensures that the magnetic fields are fully turned off when doing the
absorption imaging measurement and the imaged atom cloud can be described by a Gaussian distribution.
This is important for the subsequent analysis of the absorption images. The expansion of the atom cloud
for different TOF depends on the temperature of the cloud. By measuring the cloud width 𝜎 at different
times 𝑡 after free expansion, it is possible to extract the temperature 𝑇 of the cloud. This is done by
fitting [38]

𝜎(𝑡) =
√︂
𝑘𝐵𝑇

𝑚
𝑡
2 + 𝜎0 (2.1)

to the measured cloud widths. Here, 𝑘𝐵 is the Boltzmann constant, 𝜎0 is the initial cloud width, and
𝑚 the mass of the atoms. This is called time of flight (TOF) measurement. For a more detailed and
mathematical description of the absorption imaging method and the TOF measurement see e.g. [37–39].
The absorption imaging setup in the HQO experiment was characterized and discussed in Julia Gamper’s
master thesis [40]. As most of the laser setups required for the other experimental steps have been
documented in previous Bachelor’s and Master’s theses1, it will not be explained in much detail in this
thesis.

1 see Julia Gamper’s Bachelor’s and Master’s thesis [40, 41], Samuel Germer’s Bachelor’s thesis [42], Johanna Popp’s Master’s
thesis [35] and my Bachelor’s thesis [43]
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Chapter 2 Experimental Setup and Sequence

2.1 Initial Cold Atom Preparation

The initial cold atom preparation sequence is used to trap and initially cool the Rubidium atoms in the
MOT chamber before transporting them to the science chamber. The setup of the MOT chamber is
shown in Fig. 2.3. The chamber is a custom-made vacuum chamber (from VACOM [44]) in octagon
form. It has ten viewports, six for aligning the MOT beams through the chamber (see Section 2.1.1), one
for the connection to the magnetic transport, two for being able to do absorption imaging and another
one for fluorescence imaging. Fluorescence imaging and absorption imaging are methods used for
characterizing the ultra-cold atom cloud in the MOT chamber. The fluorescence imaging captures the
fluorescence of the atoms trapped in the MOT with a camera placed along the fluorescence imaging axis,
as shown in Fig. 2.3. This section will explain the step required to prepare the atoms for the magnetic
transport. Section 2.1.1 explains the principle of a magneto-optical trap, next the optical molasses phase
will be explained in Section 2.1.2 and the first magnetic trap in the MOT chamber for the magnetic
transport is discussed in Section 2.1.3.

Figure 2.3: CAD drawing of the MOT chamber. The MOT collimators are used for aligning the six MOT beams
through the chamber. They are placed in front of the respective viewports. The blue arrows indicate the axes used
for absorption imaging and fluorescence imaging. The green arrow shows the direction of the magnetic transport
to the science chamber.

2.1.1 Magneto-Optical Trap

The first cooling and trapping stage is a magneto-optical trap (MOT) [46]. The principle of a MOT
is based on laser cooling in a non-uniform magnetic field creating spatially dependent forces. Laser
cooling results from the conservation of energy and momentum in a scattering process. When an atom is
moving with velocity ®𝑣 in one direction it can be slowed down with a counterpropagating laser beam
with wavevector ®𝑘 . In the rest frame of the moving atom, the photon’s frequency is shifted to higher
frequencies due to the Doppler effect. In order to get absorbed, the frequency 𝜔𝐿 of the light must
be red detuned from the atomic transition [47]. The absorption of a counterpropagating, red-detuned
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(a)

(b)

Figure 2.4: (a) Realization of the magneto-optical trap with magnetic coils in anti-Helmholtz configuration. The
arrows indicate the three pairs of counterpropagating MOT beams. The coils produce a quadrupole magnetic field
𝐵. (b) Schematic of the energy level shift of the hyperfine 𝑚𝐹 states in a magnetic field for an atom moving along
the 𝑧-axis with velocity 𝑣. Counterpropagating 𝜎+-polarized light is shifted into resonance, while 𝜎−-polarized
light travelling in the same direction as the atom is shifted out of resonance. Both images are adapted from [45].

photon excites the atom to a higher lying energy state. Furthermore, the atom experiences a recoil in the
direction of the incident photon. The subsequent spontaneous decay of the atom causes an isotropic
emission of a photon. Therefore, the average transferred momentum during the spontaneous decay is
zero, leading to an average scattering force in the opposite direction of the atoms initial motion [45]. To
be able to cool down an atom cloud in one dimension, two counterpropagating red detuned laser beams
are required. The difference between the scattering forces of both beams gives the resulting cooling
force ®𝐹cooling. For a two level system this can be approximated as [47]

®𝐹cooling ≈ ℏ𝑘2 8𝛿
Γ

𝐼/𝐼sat

(1 + 𝐼/𝐼sat + (2𝛿/Γ)2)2 · ®𝑣 = −𝛼 · ®𝑣, (2.2)

where 𝐼 is the laser intensity, 𝐼sat the saturation intensity, Γ the natural linewidth and 𝛿 the detuning of
the laser frequency to the atomic transition. If 𝛿 < 0, this describes a damping force which can slow the
atoms down. Aligning two counterpropagating red-detuned laser beams on all three cartesian coordinate
axes enables the atoms to be slowed down and cooled in all three dimensions [45]. This is called optical
molasses, and will be employed in Section 2.1.2.

A non-uniform magnetic field is required to not only cool the atoms but also confine them spatially.
This can be realized, for example, with coils in anti-Helmholtz configuration. This is shown in Fig. 2.4(a).
The magnetic field is created using two magnetic coils, placed at a distance equal to their radii, and
carrying the same current 𝐼 in opposite direction. Near the symmetry center of the coil pair, the magnetic
field can be approximated as a quadrupole magnetic field. The field is zero at the center position and

7



Chapter 2 Experimental Setup and Sequence

Figure 2.5: Energy level structure of 87Rb showing the 𝐷2 line [49]. The Cooler laser drives the 𝜎+ transition
|5𝑆1/2, 𝐹 = 2, 𝑚F⟩ → |5𝑃3/2, 𝐹 = 3, 𝑚𝐹 + 1⟩ and the Repumper laser drives the transition |5𝑆1/2, 𝐹 = 1⟩ →
|5𝑃3/2, 𝐹 = 2⟩. For trapping atoms in a magnetic field they have to be optically pumped into a low field seeking state.
This is done with the optical pumping laser driving the transition |5𝑆1/2, 𝐹 = 2, 𝑚𝐹⟩ → |5𝑃3/2, 𝐹 = 2, 𝑚𝐹 + 1⟩.

increases linearly with distance to the center [45]. The properties of the magnetic quadrupole field
generated by anti-Helmholtz coil pairs will be discussed in more detail in Section 2.1.3. The magnetic
field minimum must be aligned with the crossing point of all six laser beams. Due to the Zeeman
effect [48], induced by the magnetic field, the hyperfine energy states will split up. The energy shift of
the atomic levels depends on the magnitude of the magnetic field and the magnetic quantum number 𝑚F.
Due to the energy shift the absorption of a red detuned, counterpropagating 𝜎+ photon becomes more
probable than the absorption of a 𝜎− photon propagating in the same direction as the atom. Fig. 2.4(b)
visualizes that the 𝜎+-transition is shifted into resonance for this configuration. This causes an imbalance
in the scattering forces. The atoms will be slowed down and pushed back to the center. Since the
magnetic field amplitude changes linearly with the distance to the center, the Zeeman splitting depends
on the position of the atom in the magnetic field. The total (approximated) force in one dimension (here
e.g. in the z direction) is thus position 𝑧 and velocity 𝑣 dependent [47]

𝐹MOT ≈ −𝛼𝑣 − 𝛼𝛽𝑧, (2.3)

where 𝛽 = 𝑑𝐵
𝑑𝑧

𝑔F𝜇B
ℏ𝑘 , with 𝜇B being the Bohr magneton and 𝑔F the Landé factor, and 𝛼 is defined in

Eq. (2.2). The realization of such an implementation is called Magneto-optical trap (MOT).
Besides the cooling effect in the MOT, there is also heating due to the recoil during the spontaneous

emission and absorption. This leads to a random walk of the atom. The minimal temperature the atoms
can reach in the MOT is defined by the Doppler limit [47]

𝑇D =
ℏΓ
2𝑘B

, (2.4)

with 𝑘B being the Boltzmann constant.
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To realize a magneto-optical trap of 87Rb in the experiment, three main requirements have to be met.
The laser beams have to be frequency stabilized to drive the chosen atomic transition in Rubidium.
Also, the polarization of the light has to be set correctly, and a magnetic quadrupole field has to be
generated. In Fig. 2.5 the level structure of 87Rb is shown. The cooling process is realized by the
so-called Cooler laser driving the 𝜎+ transition from |5𝑆1/2, 𝐹 = 2, 𝑚𝐹⟩ to |5𝑃3/2, 𝐹 = 3, 𝑚𝐹 + 1⟩. After
optically pumping all the atoms into |5𝑃3/2, 𝐹 = 3, 𝑚𝐹 = 3⟩ the transition induced by the cooling laser
from |5𝑆1/2, 𝐹 = 2, 𝑚𝐹 = 2⟩ to |5𝑃3/2, 𝐹 = 3, 𝑚𝐹 = 3⟩ describes a closed cooling cycle. However, since
the laser is red detuned and the polarization may not be perfect, it can happen that some atoms are excited
to |5𝑃3/2, 𝐹 = 2⟩ and can thus decay to |5𝑆1/2, 𝐹 = 1⟩. To bring these atoms back to the cooling cycle, a
Repumper laser drives the transition |5𝑆1/2, 𝐹 = 1⟩ → |5𝑃3/2, 𝐹 = 2⟩.

Cooler and Repumper laser both need to be split up into six individual beams that can be aligned along
all three axes though the vacuum chamber. This is realized by the use of fiber beam splitters that guide
the light to the MOT chamber. The polarization is adjusted to circular polarized light with the help of
quarter-wave plates (QWP) mounted behind the fiber output. Both lasers are frequency stabilized relative
to a so-called Master laser. The Master laser itself is frequency stabilized to an external Ultra Low
Expansion (ULE) cavity, relative to a cross-over resonance of 85Rb, by the Pound-Drever-Hall (PDH)
method [50]. The frequency and phase stabilization of other lasers used in the experiment relative to the
stable Master laser is realized by an Offset-Lock. This is done by overlapping the laser in question with
the Master laser on a photodiode, creating a beat-note signal. The offset locking scheme is implemented
using a high frequency divider (ADF4007 from ANALOG DEVICES [51]). For more information on the
laser setup and realization of the frequency locking scheme see the Bachelor thesis of Julia Gamper [41]
and my Bachelor’s thesis [43]. The quadrupole magnetic field is generated by one magnetic coil placed
on top and one coil placed at the bottom of the MOT vacuum chamber. These coils will be referred to as
MOT coils. Both coils are mounted in a copper block which is water cooled. To reduce eddy currents
in the coils, the copper mounts have a slit. The magnetic coil pair creates a quadrupole magnetic field
with a magnetic field gradient of 1.93 G/cm/A. Furthermore, bias magnetic coils are mounted in a
compensation cage around the chamber. These coils are used to compensate external magnetic fields and
also provide a quantization axis, for example for absorption imaging. In addition to that the combination
of the compensation coils makes it possible to move the minimum of the quadrupole field. With the
given configuration an atom cloud temperature of ∼ 300 µK is reached, which is still above the Doppler
temperature of 146 µK [49] for the cooling transition of 87Rb.

For more detailed information on how the magneto-optical trap was set up see my Bachelor’s thesis [43]
and Julia Gamper’s Master thesis [40]. The optimization by hand of the magneto-optical trap parameters
was done in the Master’s thesis of Julia Gamper. For testing the machine learning optimization algorithm
on a simple optimization problem, the MOT optimization was repeated as a proof of principle. This will
be discussed in Section 4.2.

2.1.2 Optical Molasses

As discussed in Section 2.1.1, the minimal temperature of the atom cloud in a MOT is limited by
the Doppler temperature. Due to the hyperfine structure of the 87Rb atoms it is possible to achieve
Sub-Doppler cooling by doing an optical molasses after the MOT phase. In Section 2.1.1 it has already
been discussed that an optical molasses can be realized by turning off the magnetic fields that were
required for the MOT. In the MOT the imbalance in the scattering force is caused by the Doppler shift,
making the counterpropagating 𝜎+ polarized light more probable to get absorbed. However, when the
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Doppler shift becomes smaller, due to a reduced velocity of the atoms, this imbalance is not sufficient to
cool down the atoms. This gives rise to the Doppler limit. When turning off the magnetic field while still
illuminating the atom cloud with counterpropagating 𝜎+ and 𝜎− light, a new effect appears that causes
an imbalance in the scattering force. Due to the overlap of both laser beams the atom sees a polarized
light field with a polarization axis rotating around the propagation axis. This causes a motion-induced
population difference which will in turn create an imbalance in the scattering force [52]. This leads
to a cooling process below the Doppler temperature. Since the optical molasses had already been
characterized by Julia Gamper [40] and further optimization is not subject of this thesis, a more in depth
derivation is not discussed here. For a mathematical derivation of Sub-Doppler cooling with 𝜎+/− light
see [52].

Experimentally, the optical molasses after the MOT phase is realized by turning the MOT coils off.
Furthermore, the Cooler and Repumper power are decreased, and the Cooler frequency has to be detuned
further from the resonance transition. In this way the atoms are cooled down to ∼ 26 µK, what is below
the Doppler temperature of 146 µK [49].

2.1.3 Magnetic Trap

In the next step the atoms need to be prepared for being transported from the MOT chamber to the
science chamber. The magnetic transport is realized by trapping the atoms in a magnetic potential and
moving the potential along the transport axis. To be able to do so, an initial magnetic trap has to be
generated in the MOT chamber as the first part of the magnetic transport. The general principle of
magnetic trapping and the corresponding experimental steps will be explained here. The realization of
the moving magnetic trap will be explained in Section 2.2.

An atom with magnetic dipole ®𝜇 can be trapped in a non-uniform magnetic field ®𝐵. The interaction
energy of a dipole in the magnetic field is given by [45]

𝑉 = − ®𝜇 · ®𝐵. (2.5)

If the magnetic moment is processing around the magnetic field faster than the magnetic field direction
is changing, the magnetic moment can follow the magnetic field adiabatically [53]. The adiabatic
approximation of the potential for an atom in the hyperfine state |𝐹, 𝑚F⟩ is given by 𝑉 = 𝜇B𝑔F𝑚F | ®𝐵|
[54]. Atoms which are in a state with 𝑔F𝑚F > 0 can be trapped by a magnetic field with a local minimum.
These states are known as ’weak field seeking’ states. Atoms with 𝑔F𝑚F < 0 are anti-trapped by a
magnetic field with a local minimum. They are so-called ’strong field seeking’ states and could, in
principle, experience trapping in a magnetic field maximum. According to Maxwell’s law, however,
there are no static magnetic fields with a local maximum. Therefore, only configurations that trap weak
field-seeking states can be realized [53].

There are different configurations that can be used to generate a magnetic field with a local minimum.
In the experiment such a magnetic field is created with two coils in anti-Helmholtz configuration. This is
the same configuration as used for the MOT. The generated magnetic field has a minimum | ®𝐵| = 0 at the
symmetry center of the two coils and, near the minimum, can be well approximated as a quadrupole
field. In a coordinate system with the magnetic field minimum located at the origin, the magnetic field ®𝐵
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and corresponding potential 𝑉 are given by [55]

®𝐵(𝑥, 𝑦, 𝑧) ≈ 𝐵
′

2
©«
−𝑥
−𝑦
2𝑧

ª®¬ (2.6)

𝑉 (𝑥, 𝑦, 𝑧) = 𝜇B𝑔F𝑚F
|𝐵′ |
2

√︃
𝑥

2 + 𝑦2 + 4𝑧2, (2.7)

where 𝐵′ is the magnetic field gradient along the strong z-axis. The enhanced magnetic field gradient
along the 𝑧-axis follows from Maxwell’s equation div ®𝐵 = 0 [45]. The gradient 𝐵′ depends on the coil
geometry and the current 𝐼 through the coils [55]. Since the coil geometry is fixed by the design of the
experiment, the gradient and thus the trapping potential are modified during the experimental sequence
by changing the current applied to the coils. In contrast to the quadrupole magnetic field in the MOT, a
stronger magnetic field gradient is required for the magnetic trap to cancel out gravity induced forces [56].
Furthermore, the generated zero magnetic field minimum in the anti-Helmholtz configuration can induce
Majorana spin flips. This describes the process in which the atoms transition from a trapping spin state
(𝑔F𝑚F > 0) to an anti-trapped states (𝑔F𝑚F < 0) due to non-adiabatic perturbations at small magnetic
fields. This will lead to atoms getting lost from the trap [53, 54].

To realize a magnetic trap in the experimental setup, the atoms have to be optically pumped to weak
field seeking states. For 87Rb the |5𝑆1/2, 𝐹 = 2, 𝑚𝐹 = 2⟩ dark state is such a weak field seeking state.
Even though the cooling happens on the |5𝑆1/2, 𝐹 = 2, 𝑚𝐹 = 2⟩ → |5𝑃3/2, 𝐹 = 3, 𝑚𝐹 = 3⟩ transition, it
is not ensured that all atoms are in the desired dark state after the molasses phase. Therefore, an additional
𝜎+ polarized laser driving the |5𝑆1/2, 𝐹 = 2, 𝑚𝐹⟩ → |5𝑃3/2, 𝐹 = 2, 𝑚𝐹 + 1⟩ transition, optically pumps
the atoms to the dark state in which they can be trapped. Similar to the MOT, the Repumper laser
(driving |5𝑆1/2, 𝐹 = 1⟩ → |5𝑃3/2, 𝐹 = 2⟩) is used for bringing atoms which have decayed to the state
|5𝑆1/2, 𝐹 = 1⟩ back to the optical pumping transition. The optical pumping transition is also shown in
the 87Rb level scheme in Fig. 2.5. The optical pumping and Repumper laser are turned on for 20 µs after
the optical molasses phase. In the next step, the magnetic trap in the MOT chamber is initialized. The
MOT coils generate the magnetic field for trapping with a magnetic field gradient of 130 G/cm along
the strong axis.

The process of turning the magnetic fields off after the MOT phase and turning them on again for the
magnetic trap introduces some unwanted dynamics of the atom cloud. During the cooling process in the
MOT the atoms are trapped and the trapping force in 𝑧-direction is counteracting gravity. Subsequently,
the atoms fall down when the magnetic field and the MOT beams are turned off. After the optical
molasses and the optical pumping the magnetic field is ramped up again. However, eddy currents in the
magnetic coils prevent the magnetic field to build up instantaneously. It takes 13 ms for the magnetic
field of the MOT coils to reach its maximum value when being ramped up from 0 G/cm to 130 G/cm and
another 25 ms to stabilize (see Julia Gamper’s Master’s thesis for the characterization of the coils [40]).
This gives a rather long time for the atom cloud to fall down and accelerate before being trapped again.
The increase in kinetic and potential energy of the atoms lead to a sloshing of the atom cloud around the
magnetic trap minimum and subsequently an increase in temperature of the atom cloud.

This can be verified by trapping the atoms in the magnetic trap and performing absorption imaging
after different holding times in the trap. The experimental sequence for this measurement is the following.
The atom cloud is first cooled and trapped in the MOT for 1 s, then the magnetic field is turned off
for 5 ms to realize sub-Doppler cooling and after this the atoms are pumped to the weak field seeking
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(a) (b)

Figure 2.6: Measurement of the cloud center positions 𝑦𝑐 and 𝑧𝑐 along the (a) 𝑦-axis and (b) 𝑧-axis for different
holding times 𝑡hold, MOT in the magnetic trap generated by the MOT coils. The experimental sequence is composed
of MOT phase, optical molasses phases, optical pumping and subsequent trapping in the magnetic trap. The
datapoints are averaged over 20 measurements.

dark state for 20 µs. After this the magnetic trapping field is turned back on and absorption imaging is
performed after different hold times of the atom cloud in the magnetic trap.

The center position of the atom cloud along the 𝑦- and 𝑧-axis can be extracted from these absorption
images and is plotted against the trap holding time in Fig. 2.6. The center position is defined relative to
an arbitrary origin in the capture area of the MOT absorption imaging camera. This is sufficient here,
since the aim is to extract the relative oscillation amplitude of the center position. The amplitude of the
oscillation describes the actual distance that was covered by the cloud position in the MOT, since the
pixel size of the camera and the magnification of the imaging system were taken into account here. The
atoms are sloshing with a maximal amplitude of ∼ 1.5 mm in 𝑦-direction and with a maximal amplitude
of ∼ 3 mm in 𝑧-direction. As expected the sloshing in 𝑧-direction is higher than in 𝑦-direction due to the
gravitational acceleration during the molasses and optical pumping time.

The increase in temperature can be observed by doing a time of flight measurement before and after
turning on the magnetic trap for the first time. The expansion of the atom cloud is measured along
both axes 𝑦 and 𝑧 of the imaging plane. Thus, two temperatures 𝑇𝑦,𝑧 for both axes can be extracted, by
fitting Eq. (2.1) to the data. For thermalized clouds the measured temperature values along both axes are
approximately the same. However, when the cloud is not fully thermalized the temperatures along the
two axes can differ. Since the atom cloud has only one temperature, the extracted temperatures along
both axes can not always be understood as the actual temperature of the atom cloud. However, they still
give information about the dynamic of the atom cloud and are a measure for the energy in the system.
Therefore, always both extracted temperature values are stated here for the TOF measurements.

The results of the TOF measurement immediately after the optical pumping phase are shown in
Fig. 2.7(a) and Fig. 2.7(b). The measurement yields temperatures of 𝑇𝑦 = (56.4 ± 2.2) µK and
𝑇𝑧 = (56.9 ± 2.2) µK, which lie within a 1𝜎 range. The atom cloud temperature is below the Doppler
temperature due to the Sub-Doppler cooling during the optical molasses. For the second measurement
the magnetic field, with a magnetic field gradient of 130 G/cm, was turned on after the optical pumping
phase. The atoms were trapped for 500 ms to ensure that the sloshing is sufficiently reduced before
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(a) (b)

(c) (d)

Figure 2.7: Time of flight measurement in the MOT chamber. 𝜎𝑦,𝑧 describe the atom cloud widths along the
axes of the imaging plane. The temperatures are extracted by fitting Eq. (2.1) to the datapoints. The datapoints
were averaged over 20 measurements. (a)-(b) Results for the TOF measurement after the optical pumping phase,
without turning on the magnetic trap in the MOT chamber. (c)-(d) Results for the TOF measurement after 500 ms
holding time of the atoms in the magnetic trap.

repeating the TOF measurement. The temperature extracted for the 𝑦-direction increased by almost
a factor of ∼ 3.8 and for the 𝑧-direction by a factor of ∼ 6.3, leading to temperatures even above the
Doppler temperature. The measurements show that the cloud gets heated up when the magnetic trap is
turned on.

Another important characteristic of the atom cloud in the magnetic trap is their lifetime. Atom losses
in the magnetic trap are mainly induced by collisions with background gas [57], and Majorana spin
flips [58]. With an atom cloud temperature of the order of 200 µK, the contribution of Majorana spin
flips to the atom loss mechanism can be neglected [58]. Therefore, the number of atoms trapped as a
function of time can be described by an exponential decay [57]

𝑁 (𝑡) = 𝑁0 · exp (−𝑡/𝜏), (2.8)
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where 𝜏 is the trap lifetime. The lifetime can be experimentally measured by repeating the holding
time scan over a larger scan range, extracting the atom number for each holding time 𝑡hold, SC and fitting
the exponential function to the datapoints. This is shown in Fig. 2.8(a). The lifetime is measured to
be 𝜏 = (2.108 ± 0.009) s. The lifetime measurement starts at a trap holding time of 1 s, because the
determination of the atom number with the Gaussian fits is not reliable for shorter holding times. The
cloud is not fully thermalized at these points due to the added sloshing dynamics. For this reason, the
cloud cannot be perfectly described by a Gaussian distribution. The measurement of the atom number
for holding times between 0 ms and 80 ms can be seen in Fig. 2.8(b). The increasing and decreasing of
the atom number is not expected and is probably the result of a poor fit, the measured atom number for
such short trap holding times thus only a rough estimate of the real value. When taking into account the
result of the fit parameter 𝑁0 (see Fig. 2.8(a)), describing the number of atoms at 𝑡hold,MOT = 0, and the
rough estimates from this measurement one can approximate the number of atoms trapped in the first
trapping stage as (1.0 ± 0.1) · 109 atoms. The stated error for the atom number takes into account the
systematic uncertainty of the measurement. This value will be used as a reference for calculating the
transport efficiency from the MOT chamber to the science chamber.

The oscillation of the atoms, the extracted temperature values and the number of trapped atoms
describe the properties of the atom cloud at the beginning of the magnetic transport, since the magnetic
trap generated by the MOT coils is the first trapping stage of the transport.

(a) (b)

Figure 2.8: Measurement of the atom number 𝑁 in the MOT chamber for different holding times 𝑡hold, MOT in
the magnetic trap generated by the MOT coils. The experimental sequence is composed of MOT phase, optical
molasses phases, optical pumping and subsequent trapping in the magnetic trap. (a) Measurement for holding
times between 1 s and 10 s. The datapoints are averaged over 6 measurements. The quantities 𝑁0 and 𝜏 are
extracted by fitting Eq. (2.8) to the datapoints. (b) Measurement for holding times between 0 ms and 80 ms. The
datapoints are averaged over 20 measurements.
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2.2 Magnetic Transport

Figure 2.9: Illustration, adapted from [59], of the magnetic transport principle. The left most picture shows an
atom cloud trapped in a magnetic field generated by current, indicated by the dark blue color, running through a
single coil pair. By applying current to two partly overlapping coil pairs, shown in the middle picture, the center of
the atom cloud is moved between the symmetry axes of both coils. The cloud is elongated along the transport axis.
For the right most picture the trapping potential is generated from three adjacent coil pairs. The current running
through the outer coil pairs is reduced compared to the center coil pair, illustrated by a lighter blue color.

After magnetically trapping the atoms they need to be transported over 450 mm from the MOT
chamber to the science chamber. The design for the magnetic transport was done by Cedric Wind, based
on the implementation of Greiner et al. [59]. The magnetic transport in the HQO experiment was set up
by Cedric Wind and Johanna Popp [35]. This section will explain the basic principle of the magnetic
transport and discusses the implementation into the experiment.

The idea behind the magnetic transport design is to move a magnetic trapping potential along the
transport axis, thereby transferring the trapped atoms from one side to the other. The moving magnetic
trapping potential can be realized by a chain of magnetic coils that partly overlap [59]. Three such partly
overlapping coil pairs are illustrated in Fig. 2.9. As discussed in Section 2.1.3 applying current to only
one coil pair will produce a magnetic field according to Eq. (2.7), with the position of the potential
minimum located at the symmetry center of the coils. An atom cloud trapped in such a magnetic trap is
illustrated in the leftmost picture of Fig. 2.9. When decreasing the current in the first coil pair and at the
same time increasing the current in the adjacent coil pair the generated magnetic fields of both coil pairs
overlap. The resulting magnetic field can be described again as a quadrupole field [59]. The minimum
position of the respective trapping potential lies between the symmetry center of the first and second coil
pair. The exact position depends on the ratio of the current carried by the two coils [55]. If the current in
coil pair two is further increased and the current in coil pair one decreases to zero the potential minimum
will be shifted to the symmetry center of the second coil pairs. In this way it is possible to iteratively
displace the potential along the transport axis [59].

However, this would lead to varying magnetic field gradients along the weak ®𝐵-field axes during the
transport, assuming the magnetic gradient 𝐵′ along the strong axis is kept constant during the transfer.
The magnetic field gradient along the transport direction would be weaker when being generated by
two overlapping coils compared to the pure Antihelmholtz configuration, while the other weak axis
would be increased accordingly [55]. This would lead to a flatter potential along the transport axis, thus
producing a more elongated trapped atom cloud, what is shown in the center image of Fig. 2.9. The
changing properties of the potential during the transport could cause the atoms to heat up. By adding a
third coil pair it is possible to preserve the flattened magnetic field gradient along all axes during the
transport [59]. Instead of using the magnetic field of a single coil pair to generate the trapping potential
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at the symmetry center of the respective coil pair, the potential is generated by the overlapping magnetic
field of three adjacent coil pairs. This is realized by applying suitable currents to both coil pairs sitting
next to the central one [59], as it is indicated in the rightmost picture of Fig. 2.9. The resulting magnetic
field around the trap center, which is displaced along the transport axis 𝑦 in this way is given by [55]

®𝐵(𝑥, 𝑦, 𝑧) ≈ 𝐵′ · ©«
− 𝛼

1+𝛼 · 𝑥
− 1

1+𝛼 · 𝑦
𝑧

ª®¬ , (2.9)

where the parameter 𝛼, describes the ratio of the magnetic field gradient in 𝑥-direction 𝐵′
𝑥 and 𝑦 -direction

𝐵
′
𝑦 .
The magnetic transport assembly in the HQO experiment is shown in Fig. 2.10. It consists of seven

coil pairs placed next to each other which are partly overlapping. This enables the transport of atoms over
a distance of 450 mm along the 𝑦-axis. The coordinate axis refers to the reference system introduced in
Fig. 2.1. The first coil pair is the one that is also used to generate the magnetic field for the MOT and is
therefore called MOT coil. Coil pair 5 is a double-stacked pair, consisting of 4 coils in total. This ensures
that even though the coil pair is placed further from the transport axis, it produces approximately the
same magnetic field gradient as the rest of the transport coils. All coils are water cooled to prevent them
from heating up. The start point of the magnetic transport at 𝑦 = 0 mm and the end point at 𝑦 = 450 mm
correspond to the symmetry center of the MOT coils and the SC trap coils respectively. At these positions
it is not possible to preserve the flattened magnetic field potential since the magnetic field is generated
by a single coil pair each. Therefore, the ®𝐵-field gradient along the 𝑥-axis is weaker while for the 𝑦-axis
it is greater compared to the rest of the transport. However, due to the chosen coil configuration this can
not be prevented here. Apart from this it is possible to remain the geometry of the trapping potential
throughout the transport with the given transport design. The generated magnetic fields have a magnetic
field gradient along the strong axis (𝑧-axis) of 𝐵′

= 𝐵
′
𝑧 = 130 G/cm. The magnetic field gradients in 𝑥-

and 𝑦-direction are constrained to 𝐵′
𝑥 ≈ 95 G/cm and 𝐵′

𝑦 ≈ 35 G/cm. This results from Eq. (2.9), with
𝛼 fixed to ∼ 2.71 by the setup. At 𝑦 = 0 mm and 𝑦 = 450 mm the magnetic field is given by Eq. (2.7)
resulting in magnetic field gradients of 𝐵′

𝑥 = 𝐵
′
𝑦 = 65 G/cm.

The currents that are required to generate a quadrupole magnetic field at each position 𝑦𝑉0
along the

transport axis can be seen in the upper part of Fig. 2.10. The position 𝑦𝑉0
refers here to the zero crossing

of the magnetic field, what corresponds to the position of the potential minimum. The current traces
were extracted from a magnetic field simulation that was written by Cedric Wind.

For the implementation in the experiment we want to define a time dependent transport curve 𝑦𝑉0
(𝑡).

This requires a mapping of 𝑦𝑉0
to the corresponding currents as a function of time. This mapping is done

by using the simulated relationship between 𝑦𝑉0
and the current traces, shown in Fig. 2.10. The mapping

between the transport curve to the time dependent current traces is illustrated for an example trajectory
𝑦𝑉0

(𝑡) in Fig. 2.11. The 𝑦𝑉0
(𝑡) trajectory is used as input for the magnetic transport simulation, written

by Cedric Wind. The simulation generates the corresponding current time profiles for every coil pair.
Thus, the magnetic transport can be controlled and modified by the choice of transport curve. 𝑦𝑉0

(𝑡)
must be a smooth curve that fulfills the boundary conditions 𝑦𝑉0

(𝑡 = 0) = 0 mm and 𝑦𝑉0
(𝑡 = 𝑇MT) = 𝐿,

where 𝑇MT is the total transport duration and 𝐿 = 450 mm is the length of the transport. The time
dependent current traces generated by the magnetic transport simulation are saved in files, that can be
read by the experiment control system. The experiment control will be introduced in Section 2.4. The
power supplies, which are used for applying the current to the different transport coils, are remotely
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Figure 2.10: The inner assembly of the magnetic transport, consisting of seven partly overlapping coil pairs. The
MOT coil is placed in the MOT chamber and the SC coil in the science chamber. The total transport length is
𝐿 = 450 mm. The plot above the magnetic transport shows the required current to generate a magnetic trapping
potential at the respective position along the transport axis.

controlled by the computer control system. This is indicated in Fig. 2.11 by the arrow from experiment
control system to PSU 1-4. In total four power supplies (from Delta Elektronika (2x type SM15-100
P218, 1x type SM66-AR-110, 1x SM70-90 P069)) are used. The power supplies are all connected to a
home build IGBT (insulated-gate bipolar transistor) switching box, as depicted in Fig. 2.11, to change
their connection to the coil pairs. In that way a single power supply can be used to power two coil pairs
during the transport. Although current is going through maximally three coils at any given time, a fourth
power supply is used to allow for smooth switching. The time of the switching is controlled by TTL
signals, which are timed by the experiment control system. The start and stop point of the respective
TTL signals is extracted from the current time profile of each coil pair. Seven out of the eight outputs of
the switching box are connected to the seven transport coil pairs. The connection between switching
boxes and coil pairs is also illustrated in Fig. 2.11. In this way it is possible to apply the correct current
at the corresponding time to the magnetic coils to successfully transport the atoms from MOT chamber
to the SC chamber.

When arriving in the science chamber, the atoms remain trapped in the last trap potential generated
by the SC coil pair. After some holding time, one can either do absorption imaging to characterize
the performance of the transport or the experimental sequence continuous with Rydberg excitation and
subsequent detection. In the future, when the atom chip is built into the setup, the next step would be
to transfer the atoms from the quadrupole trap into the Z-wire trap integrated on the atom chip. The
simulated transfer process is discussed in Leon Sadowski’s Master’s thesis [60].
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Figure 2.11: Implementation of the magnetic transport in the experiment. The time profile for the potential
minimum position 𝑦𝑉0

(𝑡) is used as input for the magnetic transport simulation, written by Cedric Wind. This will
generate current traces as a function of time for each coil pair. The experiment control system builds its internal
sequence based on the generated current traces and forwards the current traces to the respective power supplies
(PSU). The switching boxes control to which coil pair the output of the PSUs is applied to. The switching boxes
themselves are controlled by TTL signals, which are timed by the experiment control system.
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Figure 2.12: Off-resonant two-photon excitation scheme for exciting 87Rb to the |𝑟⟩ = |68𝑆, 𝑚𝐽 = 1
2 ⟩ Rydberg

state. ΩP and ΩC describe the Rabi frequency for the probe and control laser and ΔP and ΔC are the detunings of
the respective lasers.

2.3 Rydberg Excitation and Detection

In order to couple the Rubidium atoms to the electromechanical oscillator, they must be excited to
a Rydberg state. Therefore, once the atoms have been transported to the science chamber, Rydberg
excitation and subsequent detection takes place. The atoms are excited to a Rydberg state via two-photon
excitation. For the detection of Rydberg atoms two methods are implemented in the experiment. The
first one is based on measuring the few photon transmission spectroscopy with Single Photon Counter
Modules (SPCMs). Additionally, the successful excitation to Rydberg states can be verified by ionizing
the Rydberg atoms and subsequently detecting the Rydberg ions with a microchannel plate (MCP). The
following section gives an overview of the Rydberg excitation scheme and the two detection methods. In
particular, the setup for ionization of Rydberg atoms and ion detection is discussed here, whereas the
characterization of the detection setup is presented in Chapter 5.

The Rubidium atoms can be excited to a Rydberg state via two-photon excitation. This is schematically
shown in Fig. 2.12. A weak probe beam, with a wavelength of 780 nm, couples the ground state
|𝑔⟩ = |5𝑆1/2, 𝐹 = 2, 𝑚𝐹 = 2⟩ to the intermediate state |𝑒⟩ = |5𝑃3/2, 𝐹 = 3, 𝑚𝐹 = 3⟩. Simultaneously,
a strong 480 nm control beam drives the transition from the intermediate state to the Rydberg state
|𝑟⟩ = |68𝑆, 𝑚𝐽 = 1

2 ⟩. For the Rydberg states the hyperfine splitting is negligible and thus the |𝐽, 𝑚𝐽⟩
basis represents good quantum numbers [61]. The desired Rydberg state was chosen in this way,
since a first generation chip was designed to feature a resonator with a frequency corresponding to the
68𝑆 → 68𝑃 transition in 87Rb [60]. Weak and strong beam refers to the laser power, which are chosen
such that Ω𝐶 ≫ Ω𝑃 , where Ω𝐶 and Ω𝑃 are the Rabi frequencies of control and probe laser respectively.
The low power of the probe laser and the higher power of the control beam are required to achieve similar
coupling strengths for the |𝑔⟩ → |𝑒⟩ transition and the |𝑒⟩ → |𝑟⟩ transition. This is due to the smaller
dipole matrix element of the latter [61]. The power of the probe laser lies in the single photon regime
and the control laser power is set to ∼ 100 mW.

It is necessary to use SPCMs to detect the probe transmission signal after it has passed through the
atom cloud, due to the low power of the probe beam. The probe transmission spectroscopy is measured
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Figure 2.13: Optical setup for Rydberg excitation. Probe and Control laser are counterpropagating through the
science chamber. QWP-plates and HWP-plates are used for circular polarizing the light. The position of the
ionization electrodes are also schematically shown. The dotted arrow indicates the flight direction of the Rydberg
ions after ionization.

by scanning the detuning ΔP of the probe laser. With the control light turned off, the typical transmission
valley of the probe light is observed. If control and probe light are simultaneously turned on, Rydberg
excitation can take place. However, two cases can be distinguished in terms of Rydberg excitation. If
both probe and control laser are on resonance the probe laser drives the |𝑔⟩ → |𝑒⟩ transition and the
control laser couples the intermediate state to the Rydberg state. In this case one expects the medium to
become transparent for the probe photons leading to a transmission peak inside the probe transmission
valley around Δ𝑃 = 0. This is called electromagnetically induced transparency (EIT) and is the result of
destructive interference of possible excitation paths. For more information about EIT see e.g. [62].

If both laser are detuned from resonance, off-resonant Rydberg excitation is possible. This can be
realized if the detuning of probe and control compensate each other, such that ΔP + ΔC ≈ 0. In this
case an additional dip in the probe transmission signal at the probe detuning Δ𝑃 can be observed. Both
signals indicate that the intermediate state was coupled to the Rydberg state, and can therefore be used
for Rydberg detection.

Fig. 2.13 shows the optical setup used for Rydberg excitation and the detection of the probe transmission.
The frequency stabilized probe and control laser are guided by fibers to the science chamber. Both light
beams are circularly polarized by passing through a half-wave plate (HWP) and a quarter-wave plate
(QWP) before being focused into the chamber. The two aspheric lenses on both sides of the chamber
were chosen such that the control beam has a waist of 50 µm at the center of the chamber and the probe
laser has a waist of 9 µm. After the probe beam passed though the atom cloud the light is coupled to the
SPCM (COUNT-250C-FC from Laser Components [63]) to detect the transmitted photons.

The counting of the single photon signals is handled by a Time Tagger (from Swabian Instruments [64]),
which is a streaming time-to-digital converter. The dichroic mirrors are used for overlapping probe and
control beam. They also prevent control light being coupled into the SPCM. With the given setup it is
possible to measure the on resonance EIT peak in the transmission signal and observe an off resonant
absorption dip in the probe transmission spectrum. The detection with SPCM is documented in the
Master thesis of Julia Gamper [40] and will not be discussed here in more detail. The off resonant signal
will be used in Section 5.2 to determine the ion detection efficiency.

The second implemented detection scheme is based on the ionization of Rydberg atoms and subsequent
detection of created ions. The ionization scheme makes use of the fact that the Rydberg valence electron
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Figure 2.14: Inner assembly of the ionization and detection setup. The ionization electrodes are placed in the
science chamber. One of the ionization electrodes is positively charged, while the other one is grounded. In this
way the Rydberg atoms are ionized and subsequently pushed away. The positively charged deflection electrode
guides the ions towards the MCP. The blue arrow indicates the ion trajectory.

is weakly bound to the core. Thus, it is possible to ionize the Rydberg atom by applying an external
electric field [65]. The external field 𝐸 modifies the Coulomb potential of the Rydberg valence electron.
Classically the total potential can be approximated by the superposition of the Coulomb potential with
the additional electric potential as 𝑉 (𝑟) ≈ − 1

𝑟
− 𝑒𝐸 · 𝑟 [15]. The required electric field for ionizing

Rydberg s-states derived from this approximation is given as [66]

𝐸𝐼 ≈ 3.2 · 108 V
cm

1
𝑛
∗4 , (2.10)

where 𝑛∗ = 𝑛 − 𝛿𝑛𝑙 𝑗 is the effective principle quantum number with 𝑛 the principle quantum number of
the Rydberg state and 𝛿𝑛𝑙 𝑗 the corresponding quantum defect for a Rydberg state with quantum numbers
𝑛, 𝑙, 𝑗 [15].

From Eq. (2.10) it is apparent that the required electric field for ionization is state dependent, enabling
in principle state-selective field ionization. By linearly ramping the electric field, adjacent Rydberg
states can be ionized at distinct times according to their ionization energies. This leads to time dependent
ionization signals from which the Rydberg state distribution could be extracted [67]. The subsequent
detection of the Rydberg ions is commonly done with MCPs [61]. The working principle of the MCP
will be explained in more detail in Section 5.2, where the characterization of the ion detection setup is
discussed.

In the experiment the ionization of the Rydberg atoms and the ion detection are realized with the setup
shown in Fig. 2.14. Two electrodes are placed inside the science chamber along the axis of the magnetic
transport. After the Rydberg excitation pulse, the ionization field is turned on, and one of the electrodes
is supplied with up to 500 V. The other electrode remains grounded. This creates an electric field of up
to 192 V/cm. The electric field required for ionizing the |68𝑆⟩ Rydberg state can be determined, with
Eq. (2.10), to be ∼ 18.1 V/cm. Therefore, it is possible to ionize the atoms excited to the desired Rydberg
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state. After ionization the positively charged ions are pushed away from the positively charged electrode.
They are accelerated towards the grounded electrode, which they can pass through an integrated hole. An
additional deflection electrode is placed behind the second electrode along the same axis. By positively
charging the deflection electrode the ions get deflected and accelerated towards the front plate of the
MCP (F4655-11 from Hamamatsu Photonics K.K. [68]). The signals generated by the MCP are counted
as well by the Time Tagger. The generation of the MCP output signals and the collection of the signals
by the Time Tagger is explained in more detail in Section 5.2.

It should be noted that the described ionization setup is only implemented temporarily for the room
temperature setup. Once the cryostat is integrated into the experiment, the ionization unit will be
implemented according to the design of Leon Sadowski [60]. However, the deflection electrode and
the detection of the ion signals with the MCP will remain unchanged. Therefore, understanding and
characterizing the MCP signals in the room temperature setup will also be useful for the future setup at
cryogenic temperatures.

The Rydberg excitation/detection sequence is mainly controlled by a high speed multi-channel arbitrary
digital pulse pattern generator2 (in the following called pulse generator). The pulse generator with a
time resolution of 2 ns is suitable for generating the fast Rydberg excitation and detection pulses. The
Rydberg excitation and detection sequence is illustrated in Fig. 2.15. After the magnetic transport the
atoms are held for another 80 ms in the magnetic trap of the SC coil before the Rydberg excitation and
detection sequence starts. This is indicated in Fig. 2.15 by the magnetic field gradient 𝐵′

SC coil of the SC
coil set to 130 G/cm for 𝑡 < 0. A single Rydberg excitation and detection sequence takes 100 µs and is
structured as follows. Probe and Control light are turned on for 11 µs and 12 µs respectively. As soon
as the probe pulse is turned off again, the ionization of the Rydberg atoms begins. The ionization and
deflection control signals in Fig. 2.15 are trigger signals for the high voltage switch (AMXT-500-EF High
Voltage Switch from CGC INSTRUMENTS [70]), which controls the voltage supply to the electrodes.
As soon as the voltage switch is triggered, it switches the supply from ground to the desired voltage.
The ionization and deflection electrodes are turned on for 42 µs. The SPCM counts are measured by
the Time Tagger for 14 µs. This is indicated in Fig. 2.15 by the SPCM Time Tagger trigger set to high
during this time. The measurement of the MCP signals with the Time Tagger begins shortly after the
ionization start and stops shortly before the end of the ionization process. The reason for this is that
cross-talk to the MCP was induced when applying the high voltages for ionization and deflection to the
corresponding electrodes. Shortening the measurement time window could eliminate cross-talk from the
data. The Rydberg excitation and detection with the SPCM and the MCP is repeated 1000 times in one
experimental cycle. After the 1000 Rydberg pulses, which take a total 100 ms, the magnetic field of the
SC coil pair is turned off. The pulse generator then waits 20 ms before repeating the 1000 excitation
and detection pulses. These are background measurements, since no atoms are trapped anymore. This
sequence enables the excitation of Rydberg atoms, and allows both Rydberg detection schemes to be
employed simultaneously.

2 developed by Felix Engel during his Bachelor’s thesis [69]
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Figure 2.15: Schematic description of the Rydberg excitation and detection sequence. The time axis starts with
the beginning of the sequence. The sequence is divided into two parts. During the first 100 ms 1000 Rydberg
excitation and detection pulses are applied with the magnetic trap in the SC turned on. This is indicated by the
magnetic field gradient 𝐵′

SC set to 130 G/cm. One pulse corresponds to one Rydberg excitation and detection
pulse, which take in total 100 µs. After a short waiting time the 1000 pulses are repeated without atoms trapped,
since the magnetic field is turned off. The pulses required for Rydberg excitation are colored in light blue, the
pulses for the ionization and deflection process are colored in dark green and the measurement with the Time
Tagger is indicated by the bright green pulses. The MCP ion signal describes the signal generated by the MCP.

2.4 Experiment Control System

The experimental cycle is fully controlled by the experiment control system. This is a software, written in
C#, which can be found on GitHub3. The experiment control system generates a sequence that controls
and times the output of an ADwin. The ADwin is a real-time-processor with digital and analog outputs.
In this experiment, an ADwin-Pro II with a total of 16 analog channels and 32 digital channels is used.
It has a time resolution of 20 µs [72]. The digital outputs can be set to 0 V (low) and 5 V (high) and
are used as TTL trigger signals for different hardware devices. The TTL signals are used to control,
for example, the acousto optical modulators (AOMs) in the optical setup (see Section 4.2), trigger the
imaging camera or to switch the power supply output between different coils (see Fig. 2.11). The analog
channels provide signals between 0 V and 10 V and are used to control, for example, the output of the
power supplies for the magnetic coils or adjusting the RF power of the AOMs.

Controlling all hardware devices via a single experiment control interface ensures that their output
signals are synchronized with the rest of the sequence. The machine learning optimization routine will
run in parallel with the experimental cycle. For a successful implementation of the optimization routine,
both routines must be coordinated with each other. The experimental cycle will be briefly explained here

3 https://github.com/coldphysics
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Figure 2.16: Cycle of the experiment control system, adapted from [71]. During the preparation sequence the
experiment control system builds a new sequence model, that is saved to the database (DB). This sequence model
will be forwarded to the ADwin, which triggers different hardware devices and controls the hardware output
signals. The communication with the hardware devices is initialized via Python scripts. During the experimental
sequence the hardware (HW) output is started, and the experiment control handles the iteration of computer
controlled variables for the next model. A global counter (GC) is assigned to each sequence model.

to set the ground for the discussion about implementing the machine learning routine into the experiment
in Chapter 4.

The output routine for each channel (of the digital and analog ADwin cards) is built up by a sequence
of steps with variable duration. The step duration can be set with a variable defined in the user interface
(UI) of the experiment control system. In addition, the step output of a digital channel can be defined as
either high or low in the UI. For the analog channels there are different ways to program the output value
in the experiment control system. It can be set to a constant value, linearly ramped to a certain value,
or the output signal can be loaded from a csv or binary file. Furthermore, all the computer controlled
variables can be iterated during the experiment. This is often used to determine the optimal value of a
parameter in an experimental sequence when optimizing manually. A global counter GC is assigned to
each experimental sequence. Every sequence model and corresponding result of the experiment, that
means the absorption images taken, are saved under the respective global counter.

The experiment control cycle is shown in Fig. 2.16. It can be divided into two parts of fixed length:
the preparation sequence and the hardware output sequence, that means the experimental sequence. The
length of the latter is defined by the total ADwin sequence length. The preparation time is set by the user
when defining the basic underlying model in the experimental control. During the preparation time an
internal model is created based on the sequence that was implemented in the experiment control UI.
This model is then saved to the MySQL database, which is used for saving the experimental data in this
laboratory. Next, the communication with all the hardware devices, which are needed for the sequence
(e.g the pulse generator, DDS board, . . . ), is initialized via a Python script. A set of control values,
defined in the experiment control interface, is transferred to the hardware to configure the state of the
devices for the specific run.

The generated output sequence is then sent to the ADwin. The experimental sequence will be started
when the fixed preparation time is over. The ADwin forwards all the output signals to the respective
hardware devices and the experimental sequence starts. During this time, the experiment control handles
potential iterations of variables and updates the global counter. It then waits for the experimental
sequence to finish. After this, the internal model is updated again. Potential files, storing signal traces
for specific sequence steps, are reloaded for this. The new model is saved again to the database under a
new global counter and the cycle repeats itself. The full cycle duration can be kept constant by adjusting
the waiting time at the end of the preparation sequence according to how long it took to create the new
sequence model. The hardware is set to the last values of the sequence in the preparation phase. The
cycle is programmed such that the MOT light and the MOT magnetic fields are turned on during this
time, meaning that the MOT loading already starts in the preparation sequence.
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CHAPTER 3

M-LOOP - a Machine Learning Online
Optimization Package

A scientific experiment consists of a variety of parameters that influence the outcome of a measurement.
With a growing parameter space the manual search for an optimum becomes more difficult and at some
point nearly impossible. Applying machine learning algorithms for the optimization of a complex
scientific system can help to find the optimum more efficiently. The implementation of the machine
learning optimization into the HQO experiment is based on the open source machine learning online
optimization package (M-LOOP) [21, 73]. It was designed with the purpose to enable machine learning
based optimization in computer controlled scientific experiments and was first applied to the optimization
of the production of Bose-Einstein condensates [21]. The M-LOOP package combines the idea of online
optimization (OO) with online machine learning (OML) [21]. Section 3.1 gives a short introduction to
online optimization and online machine learning. The combination of both in the M-LOOP package and
the resulting optimization routine is discussed in Section 3.2. In Section 3.3 the optimization algorithms
implemented into the M-LOOP package are presented.

3.1 Introduction to Machine Learning Online Optimization

Classical optimization algorithms aim to find the best solution for a mathematical problem. This often
refers to finding the minimum or the maximum of an objective function [74]. These optimization problems
can be described as either ’online’ or ’offline’. Offline optimization refers to the case where a complete
dataset is known from the beginning. On the basis of that the given object can be optimized. However,
when the optimization is happening in real time, this means data is generated during the optimization
process, the problem is described as ’online’ [21, 75]. The principle of online optimization is often
employed for the optimization of experimental control parameters 𝑋 in ultra-cold-atom experiments [76].
The optimization routine is here based on first proposing new control parameters and then testing them
in the experiment. In this way the performance of the parameters can be directly measured. This will
then be used as feedback for the optimization algorithm to further improve the control parameters [77,
78]. The optimization problem is solved by applying classical optimization algorithms, for example,
gradient based [76] or genetic algorithms [79].

The idea of online optimization is combined with online machine learning in the M-LOOP package,
to make better decisions for new parameters 𝑋 to test [21]. Machine learning algorithms aim to solve a

25



Chapter 3 M-LOOP - a Machine Learning Online Optimization Package

given task 𝑇 by learning about its relevant properties from a training dataset D. The algorithm builds
a model, based on the available data, which is then used to make predictions about unseen data. The
accuracy of the model is characterized by a so-called performance measure 𝑃, which is based on the
deviation of the models predictions to the expected results. The optimization of the model’s performance
describes the learning process [80]. Machine learning algorithms are thus constructed based on the type
of dataset, the task that should be solved and the learning process.

The tasks that can be solved by a machine learning algorithm include ’classification’ and ’regres-
sion’ [81]. For classification problems, the algorithms task is to assign the input data to specific and
discrete categories. For example, this could be the classes ’True’ or ’False’ for a binary classification [80].
In the case of a regression problem, the task is to map unseen input variables to their corresponding
output target. This task is solved by finding a function 𝑓 : R𝑛 → R𝑚 that describes the mapping between
input and output variable correctly. Based on the underlying model, the algorithm can make predictions
for future inputs [80, 81]. Several other types of tasks are possible, making machine learning applicable
to many different areas [81].

The way the dataset D is presented determines how the algorithm can learn and which tasks can be
solved. The dataset can consist of a collection of input datapoints 𝑋 with target values or labels𝐶 assigned
to each input. In this case the learning process is described as ’supervised’. If the correctly assigned
targets or labels are missing, and the dataset only contains the input datapoints 𝑋 , ’unsupervised’ learning
algorithms have to be applied. A third learning category is ’reinforcement’ learning, in which the dataset
is generated through interactions with the environment. Every interaction and the gained experience,
meaning e.g.the success of the action, will be used as a tuple in the dataset. The aforementioned learning
categories only cover some of the types of learning in machine learning. However, they represent the
most common ones and therefore additional ones are not discussed here [80].

Another distinction that can be made is whether the learning is happening online or offline. This is
defined similarly to online/offline optimization. For offline learning, also called batch machine learning,
a full set of data is provided at the beginning and will be used in the learning algorithm as training data
to construct the model. In contrast to that, for online learning there is a stream of data instead of a fixed
dataset in the beginning. The datapoints arrive one at a time and can only be seen once by the algorithm.
For each new datapoint the previous model is updated and therefore improves over time. This allows
making predictions already during the learning process and not only after having processed the full
dataset [82, 83].

3.2 M-LOOP Optimization Routine

The combination of online optimization with online machine learning allows choosing new testing
parameters 𝑋 based on the prediction of the machine learner model. This can make the optimization
process more efficient. The resulting machine learning online optimization (MLOO) algorithm is a
supervised learning algorithm based on a dataset that is continuously updated during the optimization
process [21]. A single datapoint in the dataset consists of a D-dimensional optimization parameter set 𝑋
that is labeled with a corresponding cost value 𝐶 (𝑋). The D optimization parameters can be any of the
experiment’s parameters that are computer controlled. This is necessary so that they can be changed
automatically during the optimization process. The cost 𝐶 (𝑋) is a scalar quantity that characterizes
the performance of the experiment with respect to the chosen parameters. The cost function 𝐶 (𝑋) in
dependency of a parameter sets 𝑋 is the object that should be modeled and minimized at the same time.
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Figure 3.1: Illustration of the M-LOOP optimization routine. The machine learner builds a model 𝑓𝐶 of the
objective function based on the current dataset. The model is used to make a prediction about a new parameter
set 𝑋 that should be tested. The experiment cycle is then conducted with the updated parameters. A cost value
𝐶 (𝑋) with associated uncertainty𝑈 (𝑋) is extracted from the measurement results. The growing dataset is used to
update the model. The cycle repeats itself until some halting condition is met.

The task of the algorithm is to build an underlying model 𝑓𝐶 of the objective function that maps each
parameter set 𝑋 to the respective cost value𝐶 (𝑋). This model can be used to make predictions about a new
parameter set that is most likely to minimize the objective function. The datasetD = {X, (C(X),U(X))}
used to build the model is updated during the optimization process. It consists of all tested parameter
sets X = (𝑋1, . . . , 𝑋𝑁 ), the respective cost values C(X) = (𝐶 (𝑋1), . . . , 𝐶 (𝑋𝑁 )) and the uncertainties
of the cost U(X) = (𝑈1, . . . ,𝑈𝑁 ) [73].

The optimization routine required to update the dataset and improve the prediction about the optimal
parameter set is illustrated in Fig. 3.1. The algorithm first generates new testing parameters 𝑋 based on
the current model 𝑓𝐶 . The parameter values are chosen within their maximal and minimal boundaries,
which must be defined beforehand. In the next step the experiment is conducted with the new parameter
values. At the end of the experiment cycle a cost value 𝐶 (𝑋), with an uncertainty 𝑈 (𝑋), is extracted
based on the measurement results with the given parameter set. The cost value with associated uncertainty
and the corresponding parameter set form a new datapoint (𝑋,𝐶 (𝑋),𝑈 (𝑋)) in the dataset. The machine
learning algorithm will learn from the updated dataset and improve its internal model 𝑓𝐶 [73]. When
deciding on the next best testing parameters, the algorithm considers two different types of parameter
sets. These are parameter values that are most likely to minimize the current model and parameters with
relatively high cost prediction uncertainty. Taking into account parameter ranges for which the model is
rather uncertain prevents the algorithm from becoming trapped in local minima. The algorithm selects
the parameter type in an alternating manner [21]. The experiment is performed again with the new set of
parameters and the full cycle repeats itself until some halting condition is fulfilled. The halting condition
can be defined by a maximal number of total optimization runs, a maximal number of optimization
runs without finding better parameters, a target cost that has to be reached or a maximal duration of the
total optimization routine. After this the optimization is finished and the best found parameters will be
returned [73].

The advantage of online optimization over offline optimization is that the algorithm receives immediate
feedback about its predictions. As the dataset grows over time, the model becomes more precise, allowing
more accurate predictions. This means that the choice of the next testing parameters is an informed
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decision, based on the goal of minimizing the cost. This can lead to a significant improvement in
efficiency of the optimization process compared to a randomly chosen dataset, as would be the case with
offline optimization [21].

3.3 Optimization Algorithms

Machine learning online optimization can be implemented using different algorithms. One of the most
common ones are Gaussian processes and neural nets, which are also the ones that are used by the
M-LOOP package. Both algorithms develop a model that describes the mapping between parameter set
and observed cost. The generated model will then be used to find the next best parameters to test [73].

The first ten parameter sets in every optimization process are set by a training algorithm which can
be either the Differential Evolution algorithm [84], the Nelder-Mead algorithm [85], or by choosing
parameters randomly [73]. These initial training data are then used to train the machine learner. The
Differential Evolution algorithm and the Nelder-Mead algorithm are classical optimization algorithms.
Throughout this thesis the default Differential Evolution algorithm was used for training. Furthermore,
the decision about which parameter set to test next is sometimes made by the training algorithm rather
than the machine learning algorithm. This is, for example, the case when the experiment cycle is ready
to try a new parameter set, but the learning process of the machine learner is not yet finished. To not
waist any time and further generate training data in between, the experiment is then performed with
parameter values chosen by the DE algorithm [73]. Using the DE algorithm alongside the machine
learning optimization, also prevents the machine learner to get trapped in a local minimum.

The following section introduces the Differential Evolution algorithm and both machine learner
algorithms.

3.3.0.1 Differential Evolution (DE)

Differential Evolution (DE) is a direct search algorithm that search for optimal parameters, that
minimize the objective function 𝑓𝐶 (𝑋), by iteratively updating a population of parameter sets [84]. The
parameter population is defined as a parameter vector X𝐺 = (𝑋𝐺,1, 𝑋𝐺,2, . . . , 𝑋𝐺,𝑁P

) consisting of 𝑁P
D-dimensional parameter sets 𝑋𝐺,𝑖 . The dimension D of the parameter sets is defined by the number of
optimization parameters. The first generation 𝐺 of parameter sets is chosen randomly. 𝑁P new parameter
sets are generated by adding the difference between two randomly chosen parameters sets to a third
parameter set of the current generation [84]:

𝑉𝑙 = 𝑋𝐺,𝑖 + 𝐹 · (𝑋𝐺, 𝑗 − 𝑋𝐺,𝑘), 𝑙 ∈ [1, 𝑁P] (3.1)

where 𝑖, 𝑗 , 𝑘 ∈ [1, 𝑁P] are random indices and 𝐹 ∈ [0, 2] is some constant weighting factor. The entries
of a new parameter vector 𝑋𝐺+1,𝑙 are defined by randomly choosing entries from 𝑋𝐺,𝑙 and 𝑉𝑙 to fill up
the new vector. This is called crossover and is done to ensure higher variability in the new vector. All
new parameter sets are then tested in the experiment. They are accepted if they produce a lower cost
value than the corresponding parameter set of the previous generation, meaning 𝑓𝐶 (𝑋𝐺+1,𝑙) < 𝑓𝐶 (𝑋𝐺,𝑙)
is fulfilled. If this is not the case the vector entry of the previous generation is used for the new parameter
vector X𝐺+1. This is repeated until some halting conditions is met, and the parameter set resulting in the
lowest cost is returned.
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Even though differential evolution is the fastest evolutionary algorithm [84], it still converges much
slower than Gaussian processes or a neural net. Nevertheless, the machine learner can profit from new
parameter sets that are chosen by the DE algorithm. Since the DE parameter sets are independent of the
internal model built by the machine learner, they can help the machine learning algorithm to jump out of
a local minimum.

3.3.0.2 Gaussian Process (GP)

One of the algorithms used to model the objective function is a Gaussian process. For this method, the
continuous updating of the model as the dataset grows is based on Bayesian optimization. This describes
a supervised learning method [86]. Bayesian optimization uses a probabilistic approach for modelling
the objective function 𝑓𝐶 : M𝑋 → R over an infinite domain M𝑋. This assumes that the objective
function is randomly distributed and can thus be described as a stochastic process [87].

Gaussian processes are used to model these stochastic processes. They are the extensions of multivariate
functions into the infinite domain [87]. This means that the function values at every point 𝑋 ∈ M𝑋

in the infinite domain of the function are Gaussian distributed. The mean vector in the multivariate
Gaussian is replaced with a mean function 𝜇 : M𝑋 → R, describing the expectation value of the function
value at every point 𝑋 . The covariance matrix will be replaced as well with a covariance function
𝐾 : M𝑋 ×M𝑋 → R. The covariance function 𝐾 (𝑋, 𝑋 ′

, 𝐻) describes the correlation between function
values at 𝑋 and 𝑋 ′. 𝐻 is a set of D hyperparameters, for each optimization parameter in the parameter
set 𝑋 . The hyperparameters have to be fitted in ever optimization step by finding the maximum of the
likelihood function for the given observations [21]. A Gaussian process GP of the objective function 𝑓𝐶
is then defined as [87]

𝑝( 𝑓𝐶) = GP( 𝑓𝐶 ; 𝜇, 𝐾) (3.2)

and describes the probability distribution of the objective function.
The solution to the regression task is found by starting with a prior Gaussian process 𝑝( 𝑓𝐶). Since the

dataset is empty at the beginning, this distribution is not based on the actual process and just serves as an
arbitrary smooth starting distribution. The hyperparameters are set to some arbitrary initial values. The
prior distribution describes the belief about the model before seeing data. The idea behind Bayesian
optimization is to find a posterior distribution that updates the prior distribution based on observed data.
This can be achieved by determining the likelihood function. The likelihood function describes the
probability of observing the data for a given model. Multiplying the prior by the likelihood updates
the prior distribution based on how well each possible model of the prior distribution can describe
the observed data. This forms the posterior distribution. The posterior process will then serve as the
prior process in the next step, when a new observation was made. It will then be updated again based
on the new observations. Thus, Bayesian optimization is an inductive process, in which the posterior
distribution becomes more precise with every newly observed datapoint, and is thus suitable for online
machine learning [87].

The generation of the posterior process can be described more formally as follows. The starting point
is the prior Gaussian process 𝑝( 𝑓𝐶). The probability distribution of the function values Φ = 𝑓𝐶 (𝑋)
is given as 𝑝(Φ|𝑋). In the next step some observations D = {X, C}1 are made. To update the prior

1 It is assumed that the observation has no noise here, to make the short introduction more clear. However, when applying
the machine learning algorithm the noise of the observations are taken into account. For more information on Bayesian
optimization with noisy observations see [87]
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distribution with the new dataset, a posterior process 𝑝( 𝑓𝐶 |D) has to be evaluated. This is done by first
applying Bayes’ theorem to get the posterior distribution of the function values [86, 87]

𝑝(Φ|D) = 𝑝(Φ| (X, C)) = 𝑝(C|X,Φ) · 𝑝(Φ|X)
𝑝(C|X) =̂

likelihood · prior
marginal likelihood

, (3.3)

where 𝑝(C|X,Φ) is the likelihood function. The distribution 𝑝( 𝑓𝐶 |D) at an arbitrary location 𝑋 , the
so-called posterior predictive process, can be obtained by averaging over all possible function values
Φ weighted by their posterior probability [86]. The posterior process is again a Gaussian process and
describes the objective function distribution conditioned on the observed data. As this is only intended
as a short introduction to Bayesian optimization, no further mathematical details are given here. For
more information see [86] and [87].

The generation of the posterior process describes how an online model, based on Gaussian processes,
can be built. However, to be able to efficiently find the minimum of the modelled cost function, the
algorithm has to make smart choices about which parameter set 𝑋 should be used for the next observation.
In Bayesian optimization this is achieved by defining an acquisition function that returns for each potential
observation point 𝑋 a scale for their contribution to the optimization process [87]. In the M-LOOP
package the score depends on two conditions. The first one is based on the possibility of some parameter
set 𝑋 to minimize the mean function 𝜇𝐶 (𝑋 |D, 𝐻) of the posterior Gaussian process. This approach
tries to directly find the minimum of the objective function. However, since the model is only built upon
a small set of data, it is necessary to further improve it by making observations at positions where the
model is still rather uncertain about its prediction. This is done by choosing parameter sets that maximize
the variance 𝜎𝐶 (𝑋 |D, 𝐻) of the posterior Gaussian process. The acquisition function is designed such
that by finding the minimum of the function both conditions are taken into account2. The influence of
both conditions can be adapted by changing their weighting in the function. In the implementation of
the M-LOOP package the weighting is continuously scanned, to realize a more robust decision-making
process [21].

3.3.0.3 Neural Net (NN)

Neural networks (NN) are also a common method used in machine learning optimization [34, 88]. A
neural network is composed of several layers that consist of multiple nodes, called artificial neurons.
An illustration of an example neural net can be found in Fig. 3.2. All layers are connected via links
between their nodes. The number of input data defines the number of neurons in the first layer. The
subsequent layers are called hidden layers and are used to map the input data to activations of the
nodes in the last layer, the output layer. Each node in the hidden layer is connected to the nodes of the
previous layer. The activation 𝑎𝑖,𝑙 of the neuron in layer 𝑙 is generated via so-called activation functions
𝑎𝑖,𝑙 = 𝜎(∑𝑁𝑛

𝑗
𝑤𝑖 𝑗𝑎 𝑗 ,𝑙−1 + 𝑏𝑖,𝑙) that depend on the activation 𝑎 𝑗 ,𝑙−1 of all nodes in the previous layer

weighted with the parameters 𝑤 𝑗 , and an additional parameter 𝑏𝑖,𝑙 called bias. 𝑁𝑛 describes the number
of nodes in the previous layer. The weights 𝑤𝑖, 𝑗 control the contribution of the previous nodes to the
activation of the neuron in question [80]. There are different options for the activation function which
influence the behavior of the neural network. The activations of the neurons in the output layer describe
the output values. In this way it is possible to map the input data to respective outputs via the neural net

2 The acquisition function is defined as 𝐴(𝑋) = 𝑏𝜇𝐶 (𝑋 |D, 𝐻) − (1− 𝑏)𝜎𝐶 (𝑋 |D, 𝐻), where 𝑏 defines the weighting between
both conditions [21].
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Figure 3.2: Illustration of an example neural network with three hidden layers. 𝑎𝑖,𝑙 describes the activation of the
𝑖-th node in layer 𝑙. The input layer has D nodes, corresponding to D optimization parameters. Each hidden layer
has N nodes. The output layer has one node, describing the output. For the implementation of the optimization
algorithm the activation of the last node would correspond to the cost. In general, more output nodes are possible
in a neural net. Image adapted from [89].

and thus build a model of the objective function 𝑓𝐶 [80].
The learning process is based on adjusting the weights and biases for each neuron. This is done by

calculating the loss function, which corresponds to the deviation of the expected output to the measured
activation of the output nodes. Next, the gradient of the loss function with respect to the weights and
biases is determined. The weights and biases are adjusted in the opposite direction of the gradient to
minimize the loss. This is called gradient descent method. The process of adjusting the weights and
biases with respect to the loss function gradient describes the learning process of the neural net [80].

There are different algorithms that can be applied to control the training of the neural net. In the
M-LOOP implementation training of the network is achieved by applying the Adam optimizer [21]. This
is an adaptive learning rate optimization algorithm that combines the stochastic gradient descent method
with additional momentum based methods [81]. The training is repeated whenever a new datapoint is
generated. The model is thus continuously updated and becomes more precise as the dataset grows. In
the M-LOOP package three independent artificial neural networks (ANNs) are initialized and make up a
stochastic artificial neural network (SANN). Each single neural net is built up of 5 hidden layers with 64
neurons for each layer. The activation function is given by the Gaussian error linear unit [34]. After
training each ANN independently, the next step is to find the next best parameters for testing. This is
done by applying the L-BFGS-B algorithm to find parameters that minimize the current model of the
neural net [34]. L-BFGS-B uses the Quasi-Newton method. This is a second-order gradient method [81].
For more information on the optimization algorithms and deep learning in general, see e.g. [81]. To
be more robust against getting trapped in a local minimum each of the three neural nets are trained
independently, and thus each network returns a new parameter set for testing. Additionally, the training
algorithm, meaning the Differential Evolution algorithm, provides a forth parameter set. All parameter
sets are tested in the next step in the experiment, to efficiently explore the full parameter space. These
observations are then used to train all three networks to continuously improve the model [34].

The model built by ANNs may not be as reliable as the ones built by a Gaussian Process. However, the
advantage of using deep neural networks over using Gaussian processes is that the neural net learning
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process is computationally faster for larger parameter spaces. The computational time for the fitting
procedure with a Gaussian process grows with the cube of the number of training data, whereas for a
neural network it scales linearly [34, 73]. For a larger number of parameters a larger training dataset is
needed to capture all relevant information. Therefore, the use of artificial neural networks is beneficial
when optimizing a larger parameter space [34].
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CHAPTER 4

Machine Learning Online Optimization of the
Experiment

The experimental sequence in the HQO experiment is fully computer controlled as explained in Section 2.4.
This enables the implementation of the machine learning online optimization package M-LOOP [21] into
the experiment control system for the optimization of the experimental sequence. The implementation of
the machine learner cycle into the experiment cycle is explained in more detail in Section 4.1. Following
its successful implementation, the MOT sequence was optimized and the performance of different
optimization algorithms was compared. This is discussed in Section 4.2. Section 4.3 describes the
machine learning optimization of the magnetic transport sequence. It discusses how different cost
functions and parametrizations influence the outcome of the machine learning optimization.

4.1 Implementation into the HQO Computer Control

The machine learning cycle, explained in Section 3.2, and the experimental cycle, explained in Section 2.4,
must be combined so that they can work in parallel, enabling the machine learning optimization of the
experimental sequence. Apart from the fact that the parameters have to be computer controlled for the
implementation, it must also be possible to update them during the optimization process. For a normal
experiment run all parameters are set manually in advance in the experiment control interface. Possible
iterators and their respective scan range are also defined beforehand. To enable continuous updating of
the experimental parameters, an interfacing layer was introduced to which both the experimental and
machine learning cycles have access. The interplay of machine learner cycle, experiment cycle and the
connecting interfacing layer is illustrated in Fig. 4.1.

The interface layer fulfills two tasks. Firstly, it provides a channel for exchanging the new parameters
𝑋ML found by the machine learner with the computer control, in order to test them in the next experimental
cycle. Secondly, the results of the experiment run are fed back to the machine learner in the form of a
cost value via the interfacing layer.

The exchange of parameter sets is realized by saving the new parametrization in files which are
accessible for both machine learner and computer control. For the MOT optimization the optimization
parameters 𝑋ML correspond to parameters defined in the experiment sequence and can thus be directly
saved to the files. For the magnetic transport the new parameter set 𝑋ML must first be converted to
current traces and respective TTL pulses for all coil pairs. This is done with the magnetic transport
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Figure 4.1: Schematic description for the implementation of the machine learning cycle into the experiment cycle.
The green box combines both cycles by introducing an interfacing layer to which both cycle have access. The
interfacing layer is composed of three units. The first one describes the parameter files with the new parameter
values 𝑋ML chosen by the machine learner. The experiment control system reloads them in each cycle. The
MySQL database is used for saving the experimental sequence model. Furthermore, the machine learner accesses
the database to check if the parameters of the last sequence model 𝑋DB correspond to the last found parameter 𝑋ML
of the machine learner. The last unit is the vault server, to which the absorption images are saved. The absorption
images are then loaded by the machine learner controller to extract a cost value 𝐶 if the datasets match and thus
𝑋ML = 𝑋DB.

simulation, as discussed in Section 2.2. In total four files with the current traces for the power supplies
1 to 4 and additional seven files for the coil switching TTL signals are created for a new parameter
set. These are the files that the computer control can load to update the sequence model. The chosen
parametrization for both MOT optimization and magnetic transport optimization are discussed further in
Section 4.2 and Section 4.3.

Once the machine learning controller has overwritten all the parameter files, it enters a waiting state.
The experiment control system loads the files at the beginning of every cycle and updates the sequence
model. Besides updating the sequence model, the computer control system also saves the model to the
MySQL database alongside a corresponding global counter. A new measurement cycle then starts with
the updated sequence model. Each experimental sequence during the optimization ends with taking
absorption images either in the MOT chamber or in the science chamber. The absorption images can
characterize the performance of the experimental run and are thus used for extracting a cost value 𝐶 (𝑋).
The definition of the respective cost function for the MOT optimization and the magnetic transport
optimization is given in Section 4.2 and Section 4.3. After the absorption images are saved on the vault
server, under the same global counter as the sequence model, the experimental cycle repeats itself. The
database and the vault server can be accessed as well from the machine learner controller. While the
machine learner cycle is in its waiting state, it continuously checks whether the value of the parameters
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Figure 4.2: Timing between different operations during one magnetic transport optimization cycle. The blue boxes
describe the experiment cycle, the red box operation of the machine learner controller. The colored points show
times at which the experiment controller accessed the power supply files. PSU 1-4 stands for the files containing
the current traces for the power supplies 1-4. The purple cross shows the point when the experiment control sends
the ping to the machine learner controller. The time axes only corresponds to the colored datapoints that were
measured during one specific experimental cycle.

𝑋DB in the latest sequence model that was saved to the database matches with the latest testing parameter
set 𝑋ML that was generated by the machine learner. In this way the machine learner can check if the new
parameter set 𝑋ML was already tested in the experiment. If this is the case it loads the absorption images
and extracts the cost 𝐶 (𝑋ML = 𝑋DB) for the current parameter set. In this way the training dataset grows
by one. The machine learner than updates the underlying cost model based on the new datapoint, chooses
new parameters for testing, and the cycle restarts. The interfacing layer can therefore be described as a
kind of buffer that can be accessed and updated by the machine learning controller and the experiment
controller as required.

However, since both cycles operate independently of each other in principle, they must be synchronized
to prevent them accessing the different units of the interfacing layer at the same time. This is realized
by sending a ping from the experiment cycle to the machine learner cycle. The ping is triggered after
the experiment control accessed the parameter files and build up the model for the next sequence. The
timing of the ping with respect to the experiment cycle is illustrated in Fig. 4.2. The blue boxes describe
the experiment cycle and the red box indicates operations of the machine learner cycle. The purple cross
indicates the timing of the ping to the machine learner controller. After receiving the ping the machine
learner controller is allowed to overwrite the files with the updated values for the next optimization run.
It then goes into its waiting state where it continuously checks the database. This can happen in parallel
to the experiment controller saving new sequences to the database, since the experiment control always
creates a new entry in the database instead of overwriting an old one. The same holds for loading the
absorption images from the Vault server after the condition 𝑋ML = 𝑋DB is fulfilled. In this way both
cycles can in principle work in parallel without disturbing the other, if the process of writing and reading
the parameter files works fast enough.

For the MOT optimization this is the case since the parameter files only consist of single values, as
explained in Section 4.2. For the magnetic transport optimization however this still led to permission
errors when overwriting or reading the files containing the current traces for the four power supplies.
The files storing the current traces have a larger size compared to the MOT optimization parameter files,
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(a) (b) (c)

Figure 4.3: Analysis of the access times for the files storing the current traces for PSU 1-4. (a) Distribution of the
time period during which the experiment control access one of the PSU files. The file access happens during
the preparation sequence in the experiment cycle. 𝑡PSU1,f is the time of the first access of the PSU 1 file, 𝑡PSU4,l
is the time of the last access of the PSU 4 file. (b) Distribution of the time interval between the point when the
experiment control is done loading the PSU files and the time the machine learner controller receives the ping 𝑡ping.
The end point of the loading process from the experiment control is marked by the last access time to the PSU 4
file 𝑡PSU4,l. (c) Distribution of the time it takes the machine learner controller to overwrite all four PSU files during
the optimization problem.

which lead to enhanced writing and reading times. The timing of the different file access points was
therefore analyzed in more detail for the magnetic transport optimization.

As discussed before, Fig. 4.2 shows the timing between different operations during one optimization
cycle. Furthermore, the time points when the experiment control accessed the four power supply files
(PSU 1-4) during one experimental cycle are indicated by the colored points. The access times were
extracted by querying the time of the latest file access in a separate thread during the sequence. The time
on the x-axis is defined relatively to the first access time of the PSU 1 file. The time axes only specifically
match the colored datapoints. The length of the boxes beneath them is chosen arbitrarily since it was
not measured how long the different operations in the preparation sequence take. The full preparation
sequence however has a fixed duration of 1 s. The measurement show that the files are accessed several
times during the time interval in which the internal computer control model is updated. The file for PSU
1 is always accessed first and the file for PSU 4 is accessed last.

The measurement of the access points during one experimental cycle was repeated several times. The
time interval between the first access of the PSU 1 file 𝑡PSU1,f and last access of the PSU 4 file 𝑡PSU4,l
describe the total duration during which the experiment control access one of the power supply files. The
distribution of these time intervals 𝑡PSU4,l − 𝑡PSU1,f can be seen in Fig. 4.3(a). The mean time differences
between first and last access is (0.10965 ± 0.00009) s. Furthermore, the time between the point when
the experiment control accesses the last time the PSU 4 file 𝑡PSU4,l and the time the machine learner
controller receives the ping was measured for several runs (see Fig. 4.3(b)). The minimal time difference
that was measured is 0.255 s. This shows that the ping was always received after the computer control
finished reading all files. In a separate measurement the time required by the machine learner controller
to overwrite the four files was determined (see Fig. 4.3(c)), with a maximal measured write duration of
0.645 s. In principle, this should enable the machine learner to overwrite the files while the experiment
is running for ∼ 2 s and allow the experiment control to read them during the preparation time of 1 s,
without interference between the two processes. However, permission errors still occurred from time to
time, making it difficult to reach the desired number of optimization runs. Since the measurements in
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(a) (b)

Figure 4.4: (a) Schematic description for the analysis of the clock delay between pulse generator and ADwin. The
red trigger signal is generated by an ADwin channel. It is used to trigger the pulse generator. Both ADwin and
pulse generator are programmed to generate a TTL signal after a variable time of Δ𝑇 from the trigger signal. The
TTL signals are indicated by the blue dotted boxes. The time delay Δ𝐴,𝑃 between the pulse generator TTL signal
and the ADwin TTL signal is measured. (b) Results for the measurement of Δ𝐴,𝑃 with Δ𝑇 ranging from 0 s to
2.8 s.

Fig. 4.3 only capture the latest access time, but not the time the file is open, it could be that one of the
controllers has the file open for a longer time. This could explain the observed access time problems. It
was decided to not further analysis this and rather get around the problem by implementing an additional
try except statement that prevents the program to shut down when running into a permission error. Due
to the machine learner control and experiment controller not being perfectly timed, it can happen that
an experiment run goes to waist. However, the dominating factor in terms of time delay between two
optimization runs is the algorithm requiring a certain amount of time to build the new model. Thus, this
additional delay does not have a major impact.

An additional modification of the experimental sequence implementation was made for the purpose of
optimizing the magnetic transport. Instead of using the digital output of the ADwin for generating the
magnetic coil switching TTLs (explained in Section 2.2), the pulse generator (which also generates the
Rydberg excitation and detection pulses) is used. Even though the ADwin will be used for everyday
experiment cycles, it has been found that the pulse generator is more suitable for optimization. The
reason for this is that the digital ADwin sequence is programmed into the computer control interface
before starting the cycle. For each channel an individual number of steps with a variable duration and
corresponding high or low TTL can be set in the UI. The duration of the steps can be dynamically
adapted by reading and writing corresponding csv files, as it is done in the MOT optimization cycle.
However, the number of steps and the decision if the step corresponds to a high or low TTL is fixed
when starting the sequence. With this implementation it was only possible to switch the current output
between the coils for a fixed number of times, giving the machine learner less freedom for optimization.
Therefore, it was decided to use the pulse generator, for which it is possible to dynamically adapt the
number and duration of the TTL switching signals. The start of the pulse generator sequence is triggered
by the computer control, but the output sequence itself is programmed by a Python script.
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A potential issue with this implementation is that the coil switching TTLs and the power supply
outputs are no longer controlled by the same device. Even though the pulse generator is triggered by the
ADwin, this will lead to time mismatches as the internal clocks of the ADwin and the pulse generator
are not synchronized. The time delay between ADwin and pulse generator was measured with the test
sequence, schematically shown in Fig. 4.4(a). One output channel of the ADwin and one output channel
of the pulse generator are programmed to generate a TTL signal after a variable delay time Δ𝑇 relative
to a trigger signal. The trigger signal is programmed into the computer control sequence and generated
by a different ADwin channel. Δ𝑇 is the time between the ADwin trigger signal and the ADwin TTL
in question. The trigger is additionally used to start the output sequence of the pulse generator. The
time delay Δ𝑇 is scanned in the computer control from 0 s to 2 s and the time difference Δ𝑡A,P between
ADwin signal and pulse generator signal are measured with an oscilloscope. The measured datapoints
are plotted in Fig. 4.4(b). The time difference between the signals increases linearly with the delay time
Δ𝑇 . This shows that the internal clock of the pulse generator is running faster than the one of the ADwin.
The maximal duration of the magnetic transport 𝑇MT that will be tried out for the optimization process
is 2 s. This corresponds to a maximal time delay of 130 µs for the pulse generator TTLs during the
sequence. Since the experimental sequence for the magnetic transport is programmed in a way that the
TTL signals trigger the coil switching box 10 ms before the output sequence of the power supply starts, a
time delay of up to 130 µs from the pulse generator TTLs will not affect the experimental results.

Furthermore, it was observed that the pulse generator sets all channel outputs to high during its
reprogramming process, which takes place in the preparation phase of the experiment control cycle. This
means that all coil switching TTLs are set to high. If both switching TTLs for one power supply are set
to high, both connected coils are supplied with current. Since the MOT loading already begins within
the preparation time, it is important to make sure that the current supplied by PSU 1 is only applied
to the MOT coil during this time. Otherwise, the magnetic field gradient generated by the MOT coils
would be lower than required. Implementing an AND gate controlled by one ADwin TTL could ensure
that the TTL for coil 4, which is supplied by the same PSU as the MOT coil, is set to low during the
preparation time (see Fig. 2.11 for reference of the coils). Building on this, the pulse generator is suitable
for generating the coil switching TTL signals during the optimization routines. At the same time, the
results generated during the optimization process using the pulse generator are easily transferable to an
experimental sequence with the ADwin TTLs for everyday measurements.
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4.2 MOT Optimization

The magneto-optical trap is the first trapping and cooling stage in the experiment. The number of atoms
being trapped and the temperature of the atom cloud are influenced by various parameters. These
parameters can be divided into two categories, the computer controlled parameters and the ones that
can not be controlled by the computer control system. The latter comprises the correct alignment of
the Cooler and Repumper laser beams and the polarization of the laser light. These optimizations have
to be performed manually and can not be part of any machine learning online optimization routine.
This was done when initially setting up the magneto-optical trap (see [40, 43]). The second category
of computer controlled parameters includes the magnetic field gradient, the detuning of Cooler and
Repumper laser and their powers. The number of computer controlled parameters influencing the MOT
is manageable, which makes manual optimization feasible. Manual optimization refers to scanning two
or three parameters iteratively during the experimental sequence. This kind of optimization was already
done by Julia Gamper [40]. However, this optimization was repeated here using the implemented machine
learning algorithm to demonstrate the principle by first applying the learner to an easy application.
Furthermore, the performance of different optimization algorithms was tested. The implementation into
the setup (see Section 4.2.1) and the results of the optimization (see Section 4.2.2) will be discussed in
the following.

4.2.1 Parametrization and Cost Function

In order to use the implemented optimization cycle, summarized in Fig. 4.1, for the MOT optimization,
one has to decide on suitable optimization parameters 𝑋 and a cost function 𝐶 (𝑋). The parametrization
is discussed in Section 4.2.1.1 and the chosen cost function is described Section 4.2.1.2.

4.2.1.1 Parametrization

As stated above the optimization parameters of interest are the frequency and the power of the Cooler
and Repumper laser and the magnetic field gradient. The dependence of the cooling and trapping force
on the Cooler laser detuning and power, and on the magnetic field gradient, is evident in the definition of
𝐹MOT in Eq. (2.3). Furthermore, the efficiency with which the atoms are pumped back into the cooling
cycle depends on the power and detuning of the Repumper beam [45]. Since the applied magnetic
field causes an energy splitting of the hyperfine states the detuning of the lasers and the magnetic field
gradient are interdependent.

All parameters to be optimized can be changed by the experiment control system, which makes them
feasible for online machine learning optimization. The magnetic field gradient is controlled by the
current supplied to the coils. The output current of the magnetic coil power supplies can be programmed
by applying an external voltage [90]. The control voltage is supplied by the analog outputs of the ADwin.
The ADwin output is programmed by defining the desired magnetic field gradient 𝐵′

MOT coil (along the
strong 𝑧-axis) in the Computer control system and converting it to the corresponding voltage signal. This
makes it possible to adjust the magnetic field gradient in the MOT with the computer control system.

As described in Section 2.1.1 the Repumper and Cooler laser are locked relative to a Master laser
via an Offset-Lock. The reference frequency for adjusting the lock point is provided by either voltage
controlled oscillators (VCO) (ZX95-100-S+ from Mini-Circuits [91]) (for the Cooler laser) or by direct
digital synthesizers (DDS) (AD9959 4 channel 500 MSPS DDS with 10-bit DACs from ANALOG
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DEVICES [92]) (for the Repumper laser). The output frequency of the VCOs can be directly controlled
by the analog control voltages from the ADwin channels. The desired frequency is set in the experiment
control system and converted to the corresponding VCO input voltage. An additional Arduino provides
a computer interface for the DDS board. The Arduino is programmed with a Python script in every
cycle. As explained in Section 2.4, the execution of the Python script is controlled by a ping from the
experiment control system. This script reads in the required variables, which are set in the computer
control interface. Both frequency variables are defined as the detuning from the respective resonance
transition.

The laser power is controlled by an acousto optical modulator (AOM), which is placed in front of the
fiber that guides the light from the laser table to the experiment table. Only the first order, generated by
the AOM, is coupled into the fiber. Turning the RF signal for the AOM on and off using a TTL signal
turns the light on the experiment table on and off. The AOMs are therefore used as optical switches.
The power in the first order, and thus the power of the light coupled out of the fiber, can be adjusted
with the amplitude of the RF signal. The AOM RF power is controlled by the analog output voltages of
the ADwin. No power calibration converting control voltage into laser power is implemented in the
computer control system for the AOM. This is because the actual power at the MOT chamber fluctuates
due to polarization and temperature fluctuations that affect the fiber coupling.

In conclusion, the laser frequency, the laser power and the magnetic field gradient, can be changed
automatically via the computer control interface. The parametrization for the MOT optimization is thus
straightforward to select, since it simply involves finding optimal constant values for the magnetic field
gradient along the strong axis 𝐵′

MOT, the Cooler and Repumper detuning from resonance (ΔC, ΔR) and
the control voltage for the AOM RF power for both lasers (𝑉AOM,C, 𝑉AOM,R).

4.2.1.2 Cost function

In order to enable online optimization, it is necessary to define a cost function that quantifies the
performance of the measurement. There are different characteristic properties of an atom cloud trapped
in a MOT, for example, the temperature of the cloud, the atom number or the phase space density. It was
decided to optimize with respect to the number of trapped atoms 𝑁 . The atom number can be measured
by performing absorption imaging after a MOT loading phase of 1 s and 10 ms of time of flight (TOF).
The measurement is repeated three time for the same parameter set 𝑋 . The cost function is defined as the
scaled mean of the atom numbers over three measurements with the respective parameter set 𝑋

𝐶 (𝑋) = −𝑁 (𝑋) · 10−8
. (4.1)

The factor −1 in the definition is necessary, since the machine learner aims to minimize the cost function,
whereas the atom number should be maximized. The scaling with a factor of 10−8 is chosen so that
the resulting cost lies in a range between 0 and −10. The uncertainty𝑈 (𝑋) of the cost is given by the
standard error of the mean.

4.2.2 Optimization of MOT Parameters

The results of the machine learning optimization for the magneto-optical trap are discussed in this section.
The optimization process was repeated three times using different optimizer: the two machine learning
optimizers (Gaussian Process (GP) and Neural Net (NN)), and the classical search algorithm (Differential
Evolution (DE)). All three optimization processes were started with the same first parameter set 𝑋0 for the
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Figure 4.5: Cost curve for the machine learning based MOT optimization with different optimization algorithms.
Each run number corresponds to a new parameter set that was tested. The performance of the optimization
process was tested with the Gaussian Process, the Neural Net and the Differential Evolution algorithm. The large
uncertainty for one run during the Differential Evolution optimization is due to a timing problem that occurred
during one experimental cycle. The stopping condition was defined by a maximal duration of the total optimization
routine. However, all optimizations were stopped manually beforehand, once a sufficient number of runs had been
conducted.

purpose of comparison. The permitted parameter ranges are based on values that are known to produce a
MOT. For the AOM RF power control voltage the boundaries are set to [4 V, 10 V], whereas 10 V is the
highest possible value. For the Cooler this corresponds to a power range of [42 mW, 107 mW] and for
the Repumper to a power range of [1.2 mW, 3.0 mW] in each of the six MOT beams. The magnetic field
gradient range is set to [5 G/cm, 20 G/cm], the Repumper detuning range is set to [−25 MHz, 25 MHz]
and the Cooler detuning range is set to [15 MHz, 35 MHz]. The Cooler detuning describes a frequency
shift to lower frequencies with respect to the resonant Cooler transition. For the Repumper detuning the
positive values correspond to blue detuning and the negative values to red detuning from the resonant
Repumper transition.

The results of the three optimization processes are shown in Fig. 4.5 and summarized in Table 4.1.
Fig. 4.5 displays the measured cost values with respect to the run number. Every run number corresponds
to a new parameter set that was tested. The optimization with the Neural Net converges in 250 runs
to a cost value around a −6.3. The Gaussian Process is faster than this and converges after around 80
runs to a similar cost value. The DE algorithm on the other hand is clearly slower than the machine
learning algorithms. Even after 800 runs it seems to stagnate around a cost value of −5 ± 1, and did
not converge. An optimization run consisting of more than 800 runs could probably still lead to some
improvements. However, this result already shows that both machine learning algorithms perform better
than the classical search algorithm. Therefore, the DE algorithm is only used to generate the first training
datasets for the machine learning algorithms.

Furthermore, for each optimization controlled by a machine learning algorithm, the DE algorithm is
sometimes used in between to generate an additional parameter set for testing. This is important for
the machine learning algorithms to not get lost in a local minimum, as discussed in Section 3.3. The
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(a) (b)

Figure 4.6: Cost curve for the machine learning based MOT optimization with (a) the Gaussian Process as
machine learner controller and (b) the Neural Net as machine learner controller. In each machine learning based
optimization the Differential Evolution algorithm is used in between to generate some new parameter sets for
testing. The decisions made by the machine learning algorithm are marked in dark blue and the decisions made by
the Differential Evolution algorithm are marked in light blue. The red datapoint shows the run that resulted in
the best cost value. The larger uncertainties for some of the runs are due to some unknown disturbance in the
experiment that sometimes lead to a failed experimental cycle.

optimization runs shown in Fig. 4.5 with the GP and the NN were analyzed more closely in relation to
this in Fig. 4.6(a) and Fig. 4.6(b). The plots show when the decision about the next parameter set was
made by the machine learner and when by the DE algorithm. The first 10 parameter sets are always
determined by the DE algorithm, enabling the machine learner to build its initial model. Furthermore,
both plots show that the DE algorithm sometimes decides on the new parameter sets in between. Runs
with a parameter set from the DE algorithm mainly resulted in higher cost values.

Table 4.1 summarizes the results of the three optimization runs. It lists the best found parameters
during the different optimization runs and the cost measured with these parameters. The best run for the
DE optimization resulted in a cost of −6 ± 1. This corresponds to the run with the large error bar in
Fig. 4.5. The reason for the large standard error of the mean is that one out of the three measurements
per parameter set yielded an atom number that was 1.6 times greater than the other two. One possible
reason for this could be that the MOT loading time was longer than usual due to some timing problem of

Optimizer 𝑉AOM,C=̂𝑃C 𝑉AOM,R=̂𝑃R 𝐵
′
MOT ΔC ΔR Cost

GP 10 V=̂(107 ± 1) mW 10 V=̂(3.02 ± 0.01) mW 10.9 Gcm−1 29.4 MHz 12.8 MHz −6.37 ± 0.04
NN 10 V=̂(107 ± 1) mW 9.4 V=̂(2.84 ± 0.01) mW 10.9 Gcm−1 29.7 MHz 14.9 MHz −6.280 ± 0.018
DE 9.5 V=̂(101 ± 1) mW 10 V=̂(3.02 ± 0.01) mW 11.3 Gcm−1 28.6 MHz 10.9 MHz −6.055 ± 0.020

Table 4.1: Best found MOT parameters for the optimization process with the Gaussian Process (GP), the Neural
Net (NN), and the Differential Evolution (DE) algorithm. 𝑉AOM,C/R is the control voltage for the RF amplitude
of the Cooler and Repumper AOM. The respective laser power 𝑃C/R for Cooler and Repumper was measured
for one MOT beam. 𝐵′

MOT describes the magnetic field gradient for the MOT magnetic field and Δ𝐶,𝑅 is the
Cooler/Repumper detuning.
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Figure 4.7: Atom number 𝑁 measurement for different Repumper detunings ΔR. Positive ΔR values correspond to
blue detuning and the negative values to red detuning from the resonant Repumper transition. For the measurement
the MOT was loaded for 1 s. The datapoints are averaged over 17 measurement.

the computer control sequence. Therefore, the result does not seem reliable. In Table 4.1 the parameter
set of the second best cost is listed for the DE optimization. The parameter values returned by the
optimizer are given without uncertainties and are rounded to the second decimal place. Setting the
values with higher accuracy in the computer control does not affect the outcome. The GP and NN
optimization resulted in similar parameter sets. All of their parameter values differ by less than 6%,
except for the Repumper detuning ΔR. When doing a 1D scan of the Repumper detuning with the same
experimental sequence used for the optimization (see Fig. 4.7), it becomes apparent that the optimal
Repumper detuning is not significant. The parameter set found by the GP learner results in a slightly
lower cost value. However, both NN cost value (−6.280 ± 0.018) and GP cost value (−6.37 ± 0.04) still
lie within a 3𝜎-interval. Therefore, the resulting cost difference could be caused by the small deviations
in the best found parameter values but also by fluctuations in the experiment. In summary, both the GP
and NN learner were able to optimize the magneto-optical trap by identifying a parameter set within a
minimum valley of the cost function. Even though the best parameter set tested by the DE algorithm
results in a cost value of the same order, the optimizer did not converge within 800 runs, and thus does
not seem suitable for optimizations in a larger parameter space. With the optimized parameter set the
number of atoms trapped in the MOT is in the order of 6.3 · 108. This is similar to what was reached by
manual optimization, as discussed in Julia Gamper’s Master’s thesis [40].
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4.3 Magnetic Transport Optimization

The magnetic transport is an important part of the experiment since it connects the MOT chamber with
the science chamber. However, the additional step of transporting the atoms from one chamber to the
other can lead to atom loss and heating effects. Therefore, optimizing the magnetic transport is crucial
for the experiment’s overall performance. Absorption imaging in the MOT and science chamber can be
used to characterize the cloud density distribution and temperature at the start and end of the transport.
It is, however, not possible to image the cloud during the transport. The magnetic transport itself is thus
some kind of black box, since only the start and end point can be characterized. This makes the manual
optimization more difficult. Furthermore, finding a suitable parametrization for 𝑦𝑉0

is a complex task
due to the large parameter space for the optimization problem. The magnetic transport is thus a suitable
application for a machine learning optimization, that can possibly lead to improved and faster results.

This chapter characterizes at first the initial magnetic transport performance in Section 4.3.1. The
following Section 4.3.2 discusses the chosen parametrization for the potential minimum trajectory and
the cost function required for the machine learning optimization. In the next step the optimization results
are analyzed in Section 4.3.3 with respect to the influence of the cost function (see Section 4.3.3.1), the
frequency range (see Section 4.3.3.2) and the transport time (see Section 4.3.3.3).

4.3.1 Initial Magnetic Transport Characterization

The magnetic transport of the atoms can be controlled by modifying the trajectory of the trap potential
minimum 𝑦𝑉0

(𝑡) along the transport axis. Therefore, the optimization task for the magnetic transport is
to find a suitable curve for the potential minimum trajectory. Badr et al. [55], who worked with a similar
magnetic transport implementation, discussed the performance of different time profiles for the trajectory
of the magnetic trap minimum. In their experiment they are magnetically transporting sodium atoms over
a length of 310 mm in 600 ms. Various parametrization were tested, including trajectories with constant
velocity and trajectories with constant acceleration. Furthermore, they designed a parametrization with
the error function as a foundation. They concluded that the transport curve based on the error function,
which is defined as [55]

𝑦𝑉0
(𝑡, 𝑇TM) = 𝐿

2
·
(
1 − erf

[
log

(√︂
𝑇MT − 𝑡

𝑡

)] )
:= 𝑦err,𝑉0

(𝑡) (4.2)

performed best out of the tested parametrizations. The trajectory is constructed such that all time
derivatives are continuous, resulting in a smooth curve that reaches the end of the transport after a fixed
time 𝑇MT [55]. In this way it fulfills the boundary conditions 𝑦𝑉0

(𝑡 = 0) = 0 mm and 𝑦𝑉0
(𝑡 = 𝑇MT) = 𝐿,

with 𝐿 being the length of the transport. The 𝑦err,𝑉0
(𝑡) trajectory with corresponding velocity and

acceleration profiles, adapted for a magnetic transport length of 𝐿 = 450 mm and a total magnetic
transport time 𝑇MT = 1.5 s is plotted in Fig. 4.8. The advantage of 𝑦err,𝑉0

compared to a simple linear
function is that the trapping potential accelerates smoothly at the beginning of the transport and smoothly
decelerates to a velocity of zero at the transport end. The velocity is constant in the middle of the
transport. The trajectory defined in Eq. (4.2) will be referred to as error function throughout this thesis.

To test if this trajectory also gives meaningful results for the implementation in our experiment, the
magnetic transport was conducted with the transport trajectory shown in Fig. 4.8. The performance
of the magnetic transport was analyzed by doing two characterization measurements, namely a
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Figure 4.8: Position curve with respective velocity and acceleration profile for the potential minimum parametrization
constructed by [55] and defined in Eq. (4.2). For the plot the transport length 𝐿 is set to 450 mm and the total
magnetic transport time is set to 𝑇MT = 1.5 s.

magnetic trap holding time measurement and a TOF measurement after the transport sequence. The
experimental sequences of the characterization measurements will be explained in the following. For
both measurements, the atoms are first prepared in the MOT chamber according to the steps discussed in
Section 2.1 and then transported to the science chamber.

The first characterization measurement captures the dynamics of the atom cloud immediately after
the transport. This is done by holding the atoms for different durations in the last trap of the transport,
generated by the SC coils, and measuring the cloud center position. The center position is extracted by
doing absorption imaging along the 𝑧-axis with a TOF of 10 ms. Similar to the measurement plotted
in Fig. 2.6, the center position is defined relative to an arbitrary origin in the capture area of the SC
absorption imaging camera. The distances correspond to actual distances covered by the cloud in the
science chamber. The displacement of the atom cloud center position along the 𝑥- and 𝑦-axis can be seen
in Fig. 4.9(a) and Fig. 4.9(b). The maximal displacement along the 𝑥-axis, meaning the distance between
maximal and minimal center position, is around 𝑆𝑥,max ∼ 0.05 mm. The small sloshing amplitude could
be induced by the changing magnetic field gradient along the 𝑥-axis at the end of the transport, as
discussed in Section 2.2. The sloshing is stronger along the 𝑦-axis, with a maximal sloshing amplitude of
around 𝑆𝑦,max ∼ 0.38 mm. This sloshing occurs when the magnetic trapping potential stops at the end of
the transport, but the trapped atoms still have an increased velocity component along the transport axis.
Since the trap is not moving anymore, the atoms can only move within the trapping potential and thus
start sloshing around the trap center. The sloshing amplitude reduces over time. This is due to the atoms
in the cloud oscillating with different frequencies, since the magnetic trap is not a harmonic trap [45].

It is planned that the atom chip, featuring the HBAR, will be mounted on a sample holder perpendicular
to the transport axis. The planned setup in the science chamber region is shown in Fig. 4.10. After
arriving in the last quadrupole trap, the atoms will be transferred to a Z-wire trap which is integrated
on the atom chip. The aim is to bring the atoms with the quadrupole trap as close as possible to the
surface of the atom chip for loading into the Z-wire trap. The Z-wire trap will then move the atoms even
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(a) (b)

Figure 4.9: Displacement of the cloud center 𝑥𝑐 and 𝑦𝑐 along the (a) 𝑥-axis and (b) 𝑦-axis for different holding
times 𝑡hold, SC in the SC trap after the magnetic transport with 𝑦err,𝑉0

as parametrization for the trajectory of the
magnetic trap center. The images were taken after a TOF of 10 ms. The cloud width is extracted by a Gaussian fit
to the summed optical density along the respective axes. The center position is defined relative to an arbitrary
origin in the capture area of the imaging camera. The results are averaged over 20 measurements.

Figure 4.10: CAD drawing, by Leon Sadowski [60], illustrating the science chamber region with orientation of
the atom chip and the transport axis of the magnetic transport. The atom chip is mounted on a sample holder
perpendicular to the transport axis. The sample holder is connected to the cryostat.

closer to the chip. Thus, the sloshing of the atom cloud along the transport axis in the last quadrupole
trap, could lead to the atoms hitting the chip surface resulting in atom loss and coating of the chip with
Rubidium atoms. This coating may result in the buildup of surface charges, which would disturb the
Rydberg atoms due to their high sensitivity to stray electric fields [60, 93]. Therefore, it is important to
reduce the sloshing as far as possible to minimize the sloshing induced coating. In addition to that the
sloshing causes the atom cloud to heat up.

The overall heating induced by the transport can be characterized with a time of flight measurement in
the science chamber. To do so the atoms are transported to the science chamber and held in the last
SC trap with 𝐵′

= 130 G/cm for a fixed time of 450 ms. At this point the sloshing amplitude is already

46



Chapter 4 Machine Learning Online Optimization of the Experiment

(a) (b)

Figure 4.11: Time of flight (TOF) measurement in the science chamber after the magnetic transport with 𝑦err,𝑉0
(𝑡)

as potential minimum parametrization. The measurement is performed after 450 ms holding time in the last
transport trap with 𝐵′

= 130 G cm and subsequent ramping down to 𝐵′
= 130 G cm in 50 ms. (a) Measured cloud

width 𝜎𝑥 along the 𝑥-axis. (b) Measured cloud width 𝜎𝑦 along the 𝑦-axis. The measurement was repeated 20
times. 𝑇𝑥,𝑦 are extracted by fitting Eq. (2.1) to the data.

significantly reduced. This is important so that the cloud is approximately Gaussian distributed and it
is thus possible to extract the cloud width from a Gaussian fit to the cloud density distribution. It is
not waited for a longer time, since this would increase the measurement time and cause higher atom
loss due to collisions with background gas. After the holding time the magnetic field is linearly ramped
down to a magnetic field gradient of 𝐵′

= 60 G/cm in 50 ms. In the next step the TOF measurement is
performed. The reason for ramping down the magnetic field before performing absorption imaging is
that the magnetic fields can not be turned off instantaneously (as discussed in Section 2.1.3). During
the time the magnetic field drops off the residual magnetic field, due to eddy currents, induces random
dynamics in the atom cloud. This prevents the atoms from expanding freely during the intended free
expansion time in the TOF measurement and influences the imaging due to the inhomogeneous magnetic
field. To minimize this effect, the magnetic field is decreased to 60 G/cm before turning it off completely
for the TOF measurement. This reduces eddy current, making it easier to capture the actual dynamics of
the atom cloud.

The results of the TOF measurement are shown in Fig. 4.11. Eq. (2.1) is used as fit function to
extract fit values for 𝑇 in 𝑥- and 𝑦-direction. The poor fit along the 𝑦-axis is a result of the sloshing
induced dynamics and the fact that the atom cloud has not yet thermalized. Due to the additional velocity
in 𝑦-direction, the velocity distribution can not be described by a Maxwell-Boltzmann distribution
which is a prerequisite for extracting the temperature from the TOF measurement [38]. Furthermore,
the temperatures in 𝑥- and 𝑦-direction differ, since the atom cloud is not fully thermalized. Thus,
𝑇𝑥 = (117 ± 5) µK and 𝑇𝑦 = (410 ± 70) µK, extracted from the fits, are not the actual temperatures of
the atom cloud. However, both quantities are still a measure for the kinetic energy in the system and
reflect the temperature that would be reached when waiting long enough for the cloud to fully thermalize.
The fit results for 𝑇𝑥,𝑦 show that the atom cloud gets heated up during the transport. The higher value for
𝑇𝑦 is caused by the increased velocity component along the transport axis.

The last important measure for characterizing the performance of the magnetic transport with 𝑦err,𝑉0
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Figure 4.12: Atom number extracted from absorption images for different holding times 𝑡hold, SC in the SC trap
after the magnetic transport with 𝑦err,𝑉0

as parametrization for the trajectory of the magnetic trap center. The
datapoints show the results averaged over 20 measurements. The red dashed line is at 350 ms and indicates the
time point where the atom number is extracted for the transport efficiency 𝜂𝑇 .

as transport curve is the transport efficiency 𝜂𝑇 describing the relative number of atoms reaching the
end of the transport. Fig. 4.12 shows the measured atom number for different holding times in the SC
trap. The sloshing measurement (from Fig. 4.9) was analyzed with respect to the atom number for this
plot. The oscillation of the atom number for holding times between 0 ms and 300 ms is not expected
and is probably due to the poor Gaussian fit when the sloshing amplitude is too large. Therefore, the
extracted atom number values are only a rough estimate. After around 350 ms the atom number starts to
stabilize. Therefore, the value for the atom number after a trap holding time of 350 ms in the last trap
will be used as reference for the number of atoms arriving in the science chamber. The number of atoms
ending up in the SC for this measurement is thus (2.500 ± 0.009) · 108. The error estimate does not
include systematic errors. Therefore, the true uncertainty is much higher due to the aforementioned
imaging difficulties. The magnetic transport was started with (1.0 ± 0.1) · 109 atoms being trapped in
the MOT chamber (see Section 2.1.3). This results in a transfer efficiency of 𝜂𝑇 = (25.0 ± 2.5)% for the
magnetic transport with the error function 𝑦err,𝑉0

and a total magnetic transport time of 1.5 s.
In conclusion, when the error function 𝑦err,𝑉0

(𝑡) is used to parametrize the potential minimum
trajectory, around 1/4 of the atoms initial trapped in the MOT are successfully transported to the SC.
Background collisions alone however can not fully explain this atom loss. An atom cloud trapped in a
static potential with a lifetime of (2.108 ± 0.009) s, would only lose around 50% of the initial atoms
in 1.5 s. The stated lifetime is the MOT chamber lifetime, extracted from Fig. 2.8(a). The transport is
mostly through a region outside the MOT Chamber, where we expect the pressure to be better. Therefore,
the loss is overestimated here. This shows that there is still room for improvement with regard to the
choice of the transport trajectory. Furthermore, using 𝑦err,𝑉0

as the transport trajectory leads to sloshing
effects in the science chamber. These effects could potentially lead to coating of the atom chip with
Rubidium atoms, as well as atom loss and heating of the cloud. This motivates further optimization of
the trajectory with the machine learning online optimization package M-LOOP.
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4.3.2 Transport Curve Parametrization and Cost Function

To apply the implemented optimization routine to the magnetic transport, a suitable parametrization
and cost function with regard to the optimization task has to be defined. This section will introduce
the definition of the parametrization in Section 4.3.2.1 and the definition of the cost function in
Section 4.3.2.2.

4.3.2.1 Parametrization of the Transport Curve

The transport curve must be parametrized in such a way that a discrete number of optimization parameters
can modify the trajectory while preserving the boundary conditions. This can be realized by choosing a
fixed base function and adding variable modulation terms to the base function during the optimization
process. Even though the error function 𝑦err,𝑉0

(𝑡) induces sloshing and heating effect in the transport, it
is a reasonable choice for the base function of the parametrization. It is a smooth curve with continuous
time derivatives that fulfills the given boundary conditions, and is thus vastly superior to a linear transport
curve. Furthermore, already ∼ 25% of the atoms reach the end of the transport with this curve, which is
a good starting point for the optimization.

The full parametrization that is used for the optimization process is defined as follows

𝑦𝑉0
(𝑡, 𝑇MT, 𝑋) = 𝑦err,𝑉0

(𝑡, 𝑇MT) +
𝑘max∑︁
𝑘=𝑘0

𝐴𝑘 · sin
(
𝜋𝑘

𝑇MT
𝑡

)
, (4.3)

where the base function 𝑦err,𝑉0
(𝑡, 𝑇MT) is modulated by a finite sine series. This parametrization is inspired

by the chosen parametrization for the optimal quantum control search of a quantum brachistochrone
trajectory by Manolo et al. [94]. The motivation for adding the finite sine series is that it generates new
functions with periodic variations without introducing any discontinuities. Furthermore, choosing 𝑘 ∈ N
ensures that the boundary conditions 𝑦𝑉0

(𝑡 = 0, 𝑇MT, 𝑋) = 0 mm and 𝑦𝑉0
(𝑡 = 𝑇MT, 𝑇MT, 𝑋) = 450 mm

are still met. The frequency range 𝑓 =
{

𝜋𝑘
𝑇MT

}
, with {𝑘 ∈ N|𝑘0 ≤ 𝑘 ≤ 𝑘max} must be fixed before starting

the optimization. The respective amplitudes 𝑋 = {𝐴𝑘}, which define the contribution of the different
frequency components, are the free optimization parameters that are handed over to the machine learner.
The number of optimization parameters is thus defined by the number of modulation terms.

Depending on the chosen amplitudes it can happen that Eq. (4.3) results in values smaller than 0 mm
or greater than 450 mm during the transport time. However, the transport is restricted to a range of
[0 mm, 450 mm] along the transport axis by the assembly of the magnetic coils. Therefore, the additional
restriction that every 𝑦𝑉0

(𝑡, 𝑇MT, 𝑋) > 450 mm will be set to 450 mm and every 𝑦𝑉0
(𝑡, 𝑇MT, 𝑋) < 0 mm

will be set 0 mm is applied. This introduces points of discontinuity in the first and second derivative of
the trajectory, which could lead to large slopes in the current traces. Since the response of the magnetic
field to the current changes is not instantaneously (as discussed in more detail in Section 4.3.3.2), this
will in most cases not be transferred to fast changes of the magnetic trapping potential. In the case
where it does lead to a rapid movement of the trapping potential this will result in a worse performance
of the transport. However, the machine learner learns about this due to the associated higher cost
and will therefore avoid the corresponding parameter regions. It is therefore assumed that the chosen
parametrization is suitable for the given problem.
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4.3.2.2 Cost Function

Besides choosing a suitable parametrization, it is important to decide on a cost function that can capture
the performance of the magnetic transport in one value. The goal is to increase the atom number
transferred to the science chamber and at the same time decrease the sloshing and the transport induced
heating of the atom cloud. The atom number 𝑁 (𝑋) for each parameter set 𝑋 can be extracted from one
absorption image in the science chamber taken after the transport.

To measure the temperature or the sloshing, several absorption images, either at different TOF values
or different holding times have to be taken (see Fig. 4.9 and Fig. 4.11). In principle this could be
implemented into the machine learning cycle. However, the time per optimization cycle would be
significantly extended by this. To reduce the time it takes the algorithm to find a minimum, it is
preferable to define a cost value that can be extracted from a single absorption image. Therefore, the
widths 𝜎𝑥,𝑦 (𝑡TOF) of the atom cloud, at a fixed TOF time, are used as further measures for the transport
performance. The indices 𝑥 and 𝑦 refer to the axes of the imaging plane in the science chamber. This
choice was made because the widths are influenced by the cloud temperature and by sloshing. Since
𝜎𝑥,𝑦 (𝑡TOF) scales with

√
𝑇 [38], 𝑇 being the cloud temperature, it can be used as a temperature measure,

assuming a thermal distribution. Even if the cloud is not fully thermalized by the time of the imaging, the
cloud width is still a measure for the velocity distribution in the atom cloud. A larger sloshing amplitude
corresponds to an increased velocity component along the transport axis and would thus result in an
elongated cloud. Therefore, it can also quantify the sloshing. The widths of the atom cloud thus seem to
be suitable quantities for characterizing the transport with respect to the induced heating and sloshing.

The absorption imaging sequence to extract the atom number 𝑁 (𝑋) and the cloud widths 𝜎𝑥,𝑦 (𝑋)
is conducted after 350 ms holding time in the SC trap. The chosen holding time is a trade of between
waiting long enough such that the sloshing is reduced (see Fig. 4.12 and Fig. 4.9) and having a short
enough measurement cycle to reduce the total optimization time. The free expansion time before the
absorption imaging is set to 𝑡TOF = 10 ms. The individual cost factors 𝑁 (𝑋), 𝜎𝑥 (𝑋) and 𝜎𝑦 (𝑋) are
mapped to one single cost value 𝐶 (𝑋) by taking the inverse of the cloud widths and multiplying it with
the atom number

𝐶 (𝑋) = −
(
𝑁 (𝑋)
𝑁

0

)𝑎
·
(
𝜎

0
𝑥

𝜎𝑥 (𝑋)
·

𝜎
0
𝑦

𝜎𝑦 (𝑋)

)𝑏
. (4.4)

Since the extracted atom number 𝑁 (𝑋) and cloud widths 𝜎𝑥 and 𝜎𝑦 are of different orders of magnitude,
they are scaled with 𝑁0

= 1.9 · 108, 𝜎0
𝑥 = 5.1 mm, and 𝜎0

𝑦 = 5.9 mm respectively. All cost factors are
now of the order of one and can be multiplied together in the cost function. Since the machine learner is
designed such that it tries to minimize the cost function, a lower cost value should correspond to a better
performance of the experiment with the current parameter set. This is taken into account by the minus in
the definition of 𝐶 (𝑋). It ensures that a higher atom number and smaller cloud widths lead to a lower
cost value. By introducing the weight factors 𝑎 and 𝑏 (as done in Eq. (4.4)) the contributions of the two
cost factors to the total cost can be adjusted. Thus, it is possible to decide if the optimization should
either happen with stronger focus on the atom number or with respect to the cloud widths. The influence
of different weights on the optimization process will be discussed in Section 4.3.3.1.

Furthermore, an additional condition is applied to the cost function. Whenever the atom number is
smaller than 3 · 107 the cost is set to zero. The reason for this is that the absorption imaging does not
work reliably for atom clouds with an atom number much smaller than 3 · 107. This sometimes causes
unreasonable results for atom number and cloud width from the Gaussian fit. To prevent giving the
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machine learner wrong feedback, this condition was introduced. Additionally, a transport sequence
resulting in an atom number smaller than 3 · 107 does not resemble as a good run for the purpose of
the actual experiment, even if the cloud is really compressed. The experiment aims for at least an atom
number of this order to achieve a good coupling between electromechanical oscillator and Rydberg
atoms.

The measurement will be repeated three time for the same parameter set 𝑋 , and the mean over all
resulting cost values will be fed back to the machine learner. The uncertainty𝑈 (𝑋) of the cost is given
by the standard error of the mean. The cost function can thus quantify the performance of the magnetic
transport with respect to the atom number and the cloud width, which is a measure for the temperature
and sloshing, by doing a single measurement at the end of the transport.

4.3.3 Characterization of the Optimization Process

This section discusses the results of the magnetic transport optimization with different configurations. It
was decided to use the neural network as the machine learner controller for all optimizations instead of
the Gaussian Process. Even though the Gaussian Process performed better for the MOT optimization
(see Fig. 4.5), it quickly became apparent that for the magnetic transport the optimization with the
Gaussian Process takes longer than with the neural net. This is expected due to the larger parameter
space, as discussed in Section 3.3.0.3. The following optimizations are thus all conducted with the
neural network as machine learner. If not stated otherwise the first parameter set to be tested during the
optimization is chosen as 𝑋0 = {𝐴𝑘 = 0,∀𝑘}. The parameter set 𝑋0 describes the default error function
𝑦err,𝑉0

. In this way it is possible to immediately check if newly generated parameter sets perform better
or worse than the pure base function, by comparing the cost values with the initial cost value of the run.
As discussed in Section 3.2 there are different possible conditions that can define the stopping point
of the optimization routine. It was decided to choose a maximal duration of 11 hours as the halting
condition in order to ensure a predictable end point of the optimization. In the following the results
of different optimization runs will be analyzed. At first the influence of different weights 𝑎 and 𝑏 in
the cost function will be discussed in Section 4.3.3.1. Next, the modulation frequency range will be
varied to check if this can further improve the results (see Section 4.3.3.2). These characterizations are
all conducted for a magnetic transport parametrization with a total transport time of 𝑇MT = 1.5 s. In
the last step it will be checked if a longer magnetic transport of 𝑇MT = 2 s and the respective machine
learning optimization lead to better results (see Section 4.3.3.3).

4.3.3.1 Influence of the Cost Function Weights

The cost function, defined in Eq. (4.4), has two free parameters that have to be set before starting the
optimization run. These are the weights 𝑎 and 𝑏, which define the contribution of the atom number 𝑁 (𝑋)
and the atom cloud widths 𝜎𝑥,𝑦 (𝑋) to the cost value, respectively. Their impact on the performance
of the optimization will be the focus of the following discussion. The total magnetic transport time
is set to 𝑇MT = 1.5 s and the modulation frequency range for the sine series is set to 𝑓 =

{
𝑘 𝜋

1.5 s
}

with
{𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}. This results in 15 free parameters 𝐴𝑘 which are the subject of optimization. The
maximal and minimal boundaries of the optimization amplitudes 𝐴𝑘 are chosen so that the allowed
amplitude range linearly decreases with increasing frequency. The maximal absolute value of the
amplitude for the lowest frequency component (𝑘 = 1) is set to 20 mm leading to boundaries defined as
[−20 mm + 0.7 mm · 𝑘, 20 mm − 0.7 mm · 𝑘] for each frequency component 𝑘 . On the one hand this is
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Figure 4.13: Optimization results for the 1.5 s magnetic transport with the parametrization defined in Eq. (4.3), the
frequency range 𝑓 =

{
𝑘 𝜋

1.5𝑠
}

with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and the cost weight ratio 𝑎 : 𝑏 = 1 : 2. (a) Measured cost
value for each run with a new parameter set. (b) Plot with all potential minimum trajectories that were tested
during the optimization run.

done to decrease the possible parameter search space to accelerate the optimization process. On the
other hand, higher frequency modulations with large amplitudes lead to large current slopes. Since the
magnetic field can only follow current slopes up to a given range, which will be discussed in more detail
in Section 4.3.3.2, the restriction to lower amplitude values for higher frequencies was chosen. Since
the optimal parameters are not found at the border of the set boundaries, the boundary ranges were not
altered any further.

The performance of the magnetic transport optimization was tested with the weight ratios 𝑎 : 𝑏 =

{1 : 1, 1 : 2, 1 : 4}. At first the results for 1 : 2 weights will be discussed. After this the results will be
compared to the outcome of the optimization with the other weight factors.

Analysis of the optimization results with 𝒂 : 𝒃 = 1 : 2 Fig. 4.13(a) shows the optimization process
for the weight ratio 𝑎 : 𝑏 = 1 : 2. The measured cost value for each run is plotted against the run
number. Each run corresponds to a different tested parameter set 𝑋 . The algorithm starts with a cost
value of −1.1839 ± 0.0009 for the base function 𝑦err,𝑉0

and converges around a cost of −2.3. The
reason for the relatively huge amount of datapoints lying exactly at zero, is due to the cost function
condition that assigns every run with an atom number smaller than 3 · 107 to a cost value of zero. All
trajectories that were tried during the optimization process are plotted in Fig. 4.13(b). The color of the
trajectory corresponds to its respective cost. The red curve shows the trajectory that resulted in the best
cost value. This trajectory corresponds to the cost value 𝐶 (𝑋min) = −2.260 ± 0.008 marked in red in
Fig. 4.13(a). The best found trajectory differs significantly from the base function 𝑦err,𝑉0

and improves
the performance of the transport in terms of the cost value. This shows the effectiveness of the machine
learning optimization with the given transport curve parametrization.

Moreover, the plot shows that a variety of parameters were tried out. The optimal trajectory found lies
well within the range that can be reached with the set parameter bounds. This indicates that the parameter
bounds were chosen appropriately, giving the learner the freedom to reach the optimal trajectory with
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(a) (b)

Figure 4.14: Comparison of (a) best found trajectories 𝑦𝑉0
(𝑡) and (b) respective velocity profiles 𝑣𝑉0

(𝑡) of
the potential minimum along the transport axis for two optimization runs with the same configurations. Both
optimization runs for the 1.5 s magnetic transport were conducted with the parametrization defined in Eq. (4.3),
the frequency range 𝑓 =

{
𝑘 𝜋

1.5𝑠
}

with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and the cost weight ratio 𝑎 : 𝑏 = 1 : 2. The blue curves
correspond to the first optimization run in Fig. 4.13(a) and the purple curves correspond to the second optimization
run in Fig. A.1(a) in the appendix.

the given parametrization. In some cases the cutoff condition, that sets every 𝑦 value below or above the
start or end point to 0 mm or 450 mm respectively, generates trajectories where the trapping potential
is not accelerated and decelerated smoothly at the start and end point. One possible improvement of
the parametrization could thus be to apply some kind of smoothing to these curves. However, since the
algorithm seems to learn that these curves result in bad outcomes, this was not done here.

Furthermore, curves resulting in a good cost value in the order of −2.26, all have a similar shape.
Curves with higher cost values, however, seem to clearly differ. This could mean that the solution found
is near a global minimum. Alternatively, the algorithm may have become trapped in a local minimum
and did not explore different trajectories that could still lead to better outcomes. To test if the solution
is reproducible a second optimization run with the same configurations was started. The optimization
process, in terms of measured cost for each run, is shown in Fig. A.1(a) in the appendix. The best
trajectory that was found for the second optimization run is plotted together with the trajectory of the
first run in Fig. 4.14(a). Their respective velocity profiles can be found in Fig. 4.14(b). The shapes of
both curves are similar at the beginning and end. Between 0.1 s and 0.9 s the form differ slightly. For
the trajectory of the first optimization run the trapping potential is faster in the beginning than for the
trajectory of the second optimization, but is decelerated again at the point where the second one is further
accelerated. However, it seems like the small differences in the first half of the transport do not affect the
performance significantly, since the purple curve results in a minimal cost of 𝐶 (𝑋min) = −2.230± 0.011,
which lies in a 3𝜎 environment around the cost of the blue curve. Therefore, it seems like there are
several minima in the parameter landscape with a very similar performance of the magnetic transport.
For such a complex optimization problem it is to not surprising that it was not possible to find one
specific global solution. Nevertheless, the comparison shows that the dynamic of the potential minimum
at the start and end point is an important factor for the performance of the magnetic transport. Apparently
it is beneficial for the transport if the potential minimum is not continuously decelerated at the end of the
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transport, like it is the case for the error function 𝑦err,𝑉0
, but rather experiences some short acceleration

before being fully decelerated to a velocity of zero. Furthermore, in contrast to the error function,
the velocity is not kept constant during the majority of the transport time. The results show that the
introduction of additional dynamics is beneficial for the successful transport of the atoms from the MOT
chamber to the science chamber.

However, the position and velocity curves plotted in Fig. 4.14(b) and Fig. 4.14(a) are only theoretical
time profiles for the motion of the trapping potential. The actual dynamic behavior of the trapping
potential and the atoms trapped within can not be imaged along the transport. The trajectories probably
differs from the theoretical ones due to the retarded response of the magnetic fields or other perturbations
introduced by the hardware. For example, the differential pumping tube, with a diameter of 5 mm and a
length of 10 cm is located between the two chambers. The atoms pass the differential pumping tube
between 50 mm and 150 mm distance to the transport start point. This could possibly introduce further
disturbance of the cloud, if the transport axis is not aligned with the axis of the tube, possibly leading to
atom cutoff. However, the two optimization results shown in Fig. 4.14(a) differ slightly in the region
of the tube but still produce similar cost values. Thus, it seems that the chosen trajectory through the
tube does not have a major influence on the outcome here. Although it is difficult to understand the
full dynamics of the transport process, machine learning can optimize the magnetic transport without
knowing the entire system, as it indirectly learns about the system through the feedback it receives.
Therefore, machine learning optimization is very suitable for the magnetic transport, since it exact
dynamics can not be observed and are influenced by various factors that are not fully known.

The correlation between the atom number cost factor and the cloud widths cost factor for the first
optimization run (blue curve in Fig. 4.14(a)) is further analyzed in Figs. 4.15(a) to 4.15(c). The scaled
cost factors are plotted against each other, and the respective total cost is given by the colorbar. However,
only the runs leading to a cost smaller than zero are plotted here. The reason for this is that the runs
resulting in a cost of zero are those that result in an atom number below the cut-off value. In these cases,
the Gaussian fit does not work reliably, resulting in unreasonable values for the cloud widths. 𝑋min and
𝑋initial describe the parameter set resulting in the best cost and the initial parameter set, meaning the error
function 𝑦err,𝑉0

. Fig. 4.15(c) shows that 𝜎𝑥 and 𝜎𝑦 are clearly correlated with each other. Parameters
that led to a decrease of the cloud width along the x-axis also decreased the cloud width along the y-axis.
This is expected for an atom cloud in a magnetic trap that can be described as a Gaussian distribution.
However, 𝜎𝑥 and 𝜎𝑦 are not perfectly correlated, meaning during the optimization process trajectories
were tested that could e.g. improve the width in 𝑦-direction without strongly influencing the width in
𝑥-direction. This is mainly due to the transport introducing additional dynamics along the transport axis.
This is reflected by the significantly greater sloshing along the transport axis compared to the 𝑥-axis. The
best parameter set 𝑋min leads to a relative decrease of 18.1% in 𝜎𝑦 and to a relative decrease of 10.7%
in 𝜎𝑥 . This shows that the 𝑦-cloud width could be further reduced than the 𝑥-cloud width, resulting in a
less elongated atom cloud at the end of the transport. The outliers in the plot, lying within the range
𝜎𝑥/𝜎

0
𝑥 = [3, 4], mainly correspond to runs where the Gaussian fit did not properly work, but which were

not caught by the atom number cutoff condition. However, it is important to notice that the plots are only
displaying the cost factors for the parameters that were tested during this specific optimization process.
Therefore, the described correlations do not necessarily correspond to overall correlations between the
different factors. It is possible that different parameters leading to different cost factor relations were
simply not tested during this optimization run.

Fig. 4.15(a) and Fig. 4.15(b) show the relation between the measured atom number with the respective
widths. One can see that for the tested parametrizations the result of the atom number is almost
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(a) (b)

(c)

Figure 4.15: Relation between the three cost factors 𝑁/𝑁0, 𝜎𝑥/𝜎
0
𝑥 , 𝜎𝑦/𝜎

0
𝑦 for the 1.5 s magnetic transport

optimization run with the parametrization defined in Eq. (4.3), the frequency range 𝑓 =
{

𝑘 𝜋
1.5𝑠

}
with {𝑘 ∈ N|1 ≤

𝑘 ≤ 15} and the cost weight ratio 𝑎 : 𝑏 = 1 : 2. The color bar describes the respective total cost. The cost factors
are only plotted if the respective total cost value was smaller than zero.

uncorrelated to the measured 𝑥- and 𝑦-width for 𝑁/𝑁0
> 0.9. The outliers can again be attributed to a

poor fit. However, for atom numbers below and above the 𝑋min point the width slightly increases. This
shows that 𝑋min is actually located in some flat minimum for the cloud widths in the parameter space
that was tested during this optimization run. Furthermore, it seems that there is a small anti-correlation
between the atom number and 𝜎𝑦 for 𝑁/𝑁0

< 0.9. Magnetic transport realizations during which more
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atom loss occurs, thus often also led to an elongated cloud along the transport axis. This does seem
reasonable since strong and fast acceleration and deceleration can cause both atom loss and increases the
momentum along the transport axis. The best found parameters lead to a relative atom number increase
of 2.1%, compared to the error function. Although Fig. 4.15(a) and Fig. 4.15(b) indicate that there is
more room for improvement in terms of the atom number, the best parameter set was chosen according
to the cost factor weight ratio of 1 : 2, resulting in a larger improvement of the cloud widths.

To check if the cost function fulfills the aim of reducing the sloshing and the temperature, by
minimizing the cloud widths, the characterization measurements for the magnetic transport previously
done with the error function as shown in Section 4.3.1 are repeated for the optimal trajectories found
during the optimization runs. As discussed in Section 4.3.2, the performance of the magnetic transport
is characterized by the atom number after 350 ms holding time in the last trap, the fit values for 𝑇𝑥,𝑦
are determined with a TOF measurement after a total holding time of 500 ms in the last trap, and the
maximal sloshing amplitude 𝑆y,max. The fit results 𝑇𝑥,𝑦 are not the real cloud temperatures but still
indicate the temperature that will be reached when the system thermalizes, as discussed in Section 4.3.1.
The measurements are shown in Figs. 4.17(a) to 4.17(c) and the results are summarized in Table 4.2.
With the best trajectory found by the optimization the sloshing amplitude could be reduced by almost a
factor of two, from 𝑆y,max(𝑋0) ∼ 0.38 mm to 𝑆y,max(𝑋1:2,min) ∼ 0.20 mm. Furthermore, the sloshing is
damped much more quickly than it is the case for the magnetic transport with the error function. The 𝑇𝑦
values is also reduced by a factor of almost 2.2. The temperature fit result along the 𝑥-axis is the same
within the uncertainties. The results show that by optimizing the magnetic transport with respect to the
cloud widths and the atom number, it was possible to indirectly optimize the temperature of the atom
cloud in the science chamber and decrease the sloshing of the cloud in the last transport trap.

Influence of different weight ratios 𝒂 : 𝒃 The machine learning optimization of the magnetic
transport was repeated with a cost function weight ratio 𝑎 : 𝑏 of 1 : 1 and 1 : 4. The cost curves for both
optimization runs are plotted in Fig. A.1(b) and Fig. A.1(c) in the appendix. The stopping condition for
the optimization run was again defined as a maximal duration of 11 hours. The best parameter set for
both optimizations was found in the final 350 from 1600 runs. However, the algorithm did most likely not
converge at the end of the optimization time, since the measured cost does not asymptotically approach a
cost value for the last optimization runs. A longer optimization time could still lead to better results.

Rather than repeating the same optimization for a duration of more than 11 hours, a second optimization
process was started that builds on the results of the first. The results of the initial optimization can be
incorporated by using the best found trajectory in the first optimization, 𝑦𝑉0

(𝑡, 𝑇MT, 𝑋min,1), as the new
base function. The new parametrization for the second optimization process is given by

𝑦𝑉0
(𝑡, 𝑇MT, 𝑋) = 𝑦𝑉0

(𝑡, 𝑇MT, 𝑋min,1) +
𝑘max∑︁
𝑘=𝑘0

𝐴𝑘 · sin
(
𝜋𝑘

𝑇MT
𝑡

)
, (4.5)

where 𝑋min,1 is the best found parameter set of the respective initial optimization run. The frequency
range is again defined by {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}. This parametrization biases the optimizer, and it might
be more likely to become trapped in a local minimum. Despite this parametrization being slightly more
biased and restricted compared to Eq. (4.3), it was tested in subsequent optimization runs to reduce
the optimization time. For the cost factor ratio 1 : 1 the second optimization run with the new base
function did not lead to any further improvement. The results from the first optimization with the original
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(a) (b)

Figure 4.16: Comparison of the (a) best found potential minimum trajectories 𝑦𝑉0
(𝑡) and (b) respective velocity

profiles 𝑣𝑉0
(𝑡) for the 1.5 s magnetic transport optimization runs with the frequency range 𝑓 =

{
𝑘 𝜋

1.5𝑠
}

with
{𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and different cost factor weights 𝑎 : 𝑏 = {1 : 1, 1 : 2, 1 : 4}. 𝑋𝑎:𝑏,min is the best found
parameter set for the optimization run with wight ratio 𝑎 : 𝑏. 𝑋0 is the initial parameter set, describing the base
function 𝑦err,𝑉0

.

parametrization are therefore analyzed here in more detail. These results are referred to as 𝑋1:1,min. For
the optimization with the cost factor ratio of 1 : 4 the results could be significantly improved compared
to the first optimization. The cost curve for the second optimization run is plotted in Fig. A.1(d) in the
appendix. The base function used for the second optimization process, which corresponds to the best
trajectory found in the first optimization, is plotted in Fig. A.2(a) in the appendix. The algorithm also
did most likely not converge for the second optimization, since the measured cost is still significantly
improving for the last optimization runs. However, by analyzing the contribution of the different cost
factors to the cost one can conclude that the parameters that decrease the cost primarily improve the cloud
widths while simultaneously leading to a significant decrease in the atom number. The atom numbers
almost reach the defined atom number threshold of 3 · 107 atoms. For this reason, the machine learning
optimization was not repeated any further. The best found parameter set from the second optimization
run is defined as 𝑋1:4,min and will be used for comparing the results of the different cost functions. The
final trajectory results for all three machine learning optimizations with different cost ratios are plotted
in Fig. 4.16(a) with their respective velocity curves in Fig. 4.16(b).

The characterization measurements, consisting of the sloshing measurement and the TOF measurement,
are repeated for these trajectories. The measurements are shown in Figs. 4.17(d) to 4.17(i) and the
extracted quantities for comparison are summarized in Table 4.2. With the parametrization 𝑋1:1,min,
14% more atoms were transported to the science chamber compared to the realization with the 𝑋1:2,min
parametrization. The resulting 𝑇𝑦 value however is a factor of 1.2 greater and the maximal sloshing
amplitude is almost about a factor of 2 larger. Nevertheless, compared to the initial parametrization 𝑦err,𝑉0
the temperature along the transport axis could still be decreased, even though the sloshing amplitude is
approximately the same. However, the sloshing for 𝑋1:1,min is damped more strongly than for 𝑦err,𝑉0

.
This was already observed for the parametrization with 𝑋1:2,min. The different sloshing amplitudes can
possibly be attributed to the slightly different shape of the curves at the end of the transport. For all
parametrizations, the trapping potential accelerates again at the end of the transport, around 𝑡 = 1.1 s,

57



Chapter 4 Machine Learning Online Optimization of the Experiment

𝑋 𝜂𝑇
𝜎𝑥 (𝑋0 )−𝜎𝑥 (𝑋min )

𝜎𝑥 (𝑋0 )
𝜎𝑦 (𝑋0 )−𝜎𝑦 (𝑋min )

𝜎𝑦 (𝑋0 )
𝑇𝑥 (𝑋min)/µK 𝑇𝑦 (𝑋min)/µK 𝑆𝑦,max(𝑋min)/mm

𝑋1:2,min (26.5 ± 2.6)% 10.1% 18.1% 120.6 ± 2.0 189 ± 9 ∼ 0.20
𝑋1:1,min (30 ± 3)% 12.2% 5.3% 142.6 ± 2.4 228 ± 12 ∼ 0.39
𝑋1:4,min (5.1 ± 0.5)% 33.3% 34.1% 92 ± 4 126.8 ± 1.2 ∼ 0.09
𝑋
𝑠
1:4,min (4.9 ± 0.5)% - - 86 ± 4 121.5 ± 0.9 ∼ 0.10

𝑋0 (25.0 ± 2.5)% − − 117 ± 5 410 ± 70 ∼ 0.38

Table 4.2: Comparison of characterization measurements for the 1.5 s magnetic transport optimization runs with the
frequency range 𝑓 =

{
𝑘 𝜋

1.5𝑠
}

with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and different cost factor weights 𝑎 : 𝑏 = {1 : 1, 1 : 2, 1 : 4}.
𝑋𝑎:𝑏,min is the best found parameter set for the optimization run with wight ratio 𝑎 : 𝑏, 𝜂𝑇 is the transport efficiency,
𝑇𝑥,𝑦 are the temperature fit results and 𝑆𝑦,max describes the maximal sloshing amplitude along the transport axis.
𝜎𝑥,𝑦 (𝑋0 )−𝜎𝑥,𝑦 (𝑋min )

𝜎𝑥,𝑦 (𝑋0 )
describes the relative improvement of the cloud widths for the best found trajectories compared

to the magnetic transport realization with the initial parameter set 𝑋0, describing the base function 𝑦err,𝑉0
. 𝑋𝑠

1:4,min
is the parametrization of the smoothed and shortened 𝑋1:4,min trajectory.

before decelerating and stopping at the transport end. For 𝑋1:2,min and 𝑋1:4,min there is an additional
small acceleration phase around 𝑡 = 1.4 s. This results in an S-curve like shape of the potential minimum
trajectory at the end of the transport in all cases. A flatter S-curve at the end, results in a smaller 𝑇𝑦 fit
result. One reason for this could be, that the trapping potential approaches the transport end more slowly.
This decelerates the atoms earlier, resulting in a smaller velocity along the transport axis at their arrival
in the science chamber. In this way, the 𝑋1:4,min decreases the sloshing amplitude to ∼ 0.09 mm. The
𝑇𝑦 = (126.8 ± 1.2) µK fit value, is reduced by a factor of ∼ 3.2 compared to the error function 𝑦err,𝑉0

.
Additionally, this parametrization results in a decreased 𝑇𝑥 = (92 ± 4) µK.

However, the measured sloshing amplitude can not be directly compared to the results with the other
trajectories. The respective velocity curve has a point of discontinuity at 1.43 s where the velocity
jumps from 55 mm/s to 0 mm/s. This discontinuity in the velocity is a result of the cutoff condition at
𝑦 = 450 mm. Thus, for the 𝑦𝑉0

(𝑡, 1.5 s, 𝑋1:4,min) parametrization the atom cloud already arrives at the
end of the transport after 1.43 s. The trajectory thus features a small plateau at the end of the transport.
During this time the sloshing is already damped, leading to a lower maximal sloshing amplitude at the
start of the sloshing measurement. To capture the movement of the center position immediately after
the atoms arrive in the science chamber the characterization measurements were repeated with a total
magnetic transport time of 1.43 s. The results can be found in Figs. A.4(a) to A.4(c) in the appendix. It
can be seen that the sudden stop of the transport leads to an increased sloshing amplitude of 0.65 mm,
while the measured temperature stays the same since no additional heating effects are introduced.

Since the sloshing is still damped relatively quickly, it might be possible to prevent the first large
sloshing amplitude by continuously decelerating the trap minimum until it reaches a velocity of zero. To
test this, the trajectory is adapted by smoothening the end, by applying a quartic B-spline interpolation1.
The condition 𝑦 ≤ 450 mm is still taken into account for the smoothening. The total magnetic transport
time is reduced to 1.45 s, which corresponds to the time when 𝑦𝑉0

= 450 mm for the smoothed curve.
The new trajectory is described with the parameter set 𝑋𝑠

1:4,min. The position curve and the respective
velocity curve are shown in Fig. A.2(b) in the appendix. The characterization measurements for this
curve can be found in Figs. A.4(d) to A.4(f) in the appendix and are summarized in Table 4.2. With the

1 For the smoothening the make_interp_spline function from the scipy.interpolate module in Python was used.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.17: Characterization measurements for the 1.5 s magnetic transport with the best found trajectories from
the optimization run with frequency range set to 𝑓 =

{
𝑘 𝜋

1.5𝑠
}

with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and different cost factor
weights 𝑎 : 𝑏 = {1 : 1, 1 : 2, 1 : 4}. Results for (a)-(c) 𝑋1:2,min, (d)-(f) 𝑋1:1,min (g)-(i) 𝑋1:4,min parametrization.
The characterization measurements consist of a TOF measurement in the science chamber and the measurement
of the displacement of the cloud center 𝑦𝑐 along the transport axis for different holding times 𝑡hold, SC in the SC
trap after the magnetic transport. 𝜎𝑥,𝑦 describes the cloud width along the 𝑥- and 𝑦-axis. The temperatures are
extracted by fitting Eq. (2.1) to the data. The sloshing measurements are averaged over 10 loops and the TOF
measurements are averaged over 20 loops.

smoothed curve at the end of the transport it is possible to reduce the sloshing to a maximal amplitude of
𝑆𝑦,max ∼ 0.10 mm. Furthermore, the temperatures are reduced even a bit further compared to the original
𝑋1:4,min parametrization. Thus, it was possible, with small post optimization by hand, to significantly
reduce the sloshing and the temperature of the atom cloud at the science chamber with the best found
trajectory of the optimization process with weight ratio 𝑎 : 𝑏 = 1 : 4. A small plateau at the end of the
other two trajectories can also be observed. However, since this happens in the last 2 ms of the transport,
the sloshing behavior can still be captured sufficiently, and the characterization measurements are thus
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not repeated here for corrected trajectories.
Due to the complexity of the system, it is not possible to identify a clear effect-cause relationship

between the transport curve and the resulting transport performance. One can conclude that slowly
transporting the atoms at the end seems crucial for reducing heating effects. A flat S-curve like trajectory
at the end points seems optimal here.

Atom Loss Analysis Apart from the fact that the 𝑋1:4,min parameter set leads to less heating, it does
cause a significant atom loss. Only ∼ 5% of the atoms arrive at the end of the transport with the 𝑋1:4,min
parametrization. This atom loss also occurs similarly for the smoothed curve 𝑋𝑠

1:4,min. One prominent
difference between this trajectory and the other optimization results is that the magnetic trap potential
goes backwards once at 𝑡 ∼ 0.9 s. The magnetic trap is strongly decelerated and accelerated again around
this point. This could result in a built-up of the atom oscillation around the trap center, causing the atoms
to gain enough energy to escape the trap.

To identify if the proposed loss mechanism is indeed present in the system, a simplified 1D Monte
Carlo simulation of the magnetic transport was implemented. The movement of the atoms inside the
moving trapping potential was simulated by solving Newtons equation of motion along the transport axis
𝑦 in 1D [55]

𝐹𝑦 = 𝑚 · 𝑑
2

𝑑𝑡
2 𝑦𝐴(𝑡) = −

(
∇𝑉 (𝑦𝐴(𝑡), 𝑡)

)
𝑦

− 𝑚 · 𝑑
2

𝑑𝑡
2 𝑦𝑉0

(𝑡) (4.6)

= − sgn(𝑦𝐴(𝑡)) · 𝑔𝐹𝑚𝐹𝜇𝐵𝐵
′
𝑦 − 𝑚 · 𝑑

2

𝑑𝑡
2 𝑦𝑉0

(𝑡). (4.7)

Here, 𝑦𝐴(𝑡) describes the atom position in the comoving frame where the origin is given by the position
of the potential minimum, 𝑦𝑉0

(𝑡) is the potential minium trajectory during the transport, 𝑚 is the mass
of the Rubidium atoms and 𝐵′

𝑦 the magnetic gradient along the transport axis. The first term describes
the trapping force and the second term is the additional acceleration force due to the moving potential
minimum. The simulation is a classical simulation of the one-dimensional dynamics during the magnetic
transport and does not take into account collisions between the atoms. It is not a full simulation of the
dynamics of the atom cloud in the moving trapping potential, since only one dimension is simulated,
collisions between the atoms are neglected and additional losses like Majorana spin flips are not included.

Furthermore, a constant magnetic field gradient of 𝐵′
𝑦 = 35 G/cm is assumed for the simulation.

This approximation only holds for small distances to the trap minimum. Due to the coil geometry the
magnetic field will decrease again for larger distances. This can be seen in Fig. 4.18(a), where the
magnetic fields at four different positions along the transport axis, extracted from the magnetic transport
simulation written by Cedric Wind, are plotted. The different forms of the magnetic field are caused
by small differences in the geometry of the transport coils. At the start and end point (𝑦 = 0 mm and
𝑦 = 450 mm) the magnetic field has a greater gradient of 𝐵′

𝑦 = 65 G/cm since it is only generated by
one coil pairs as discussed in Section 2.2. Due to the different coil geometry the maximal magnetic field
that is generated during the transport varies along the transport axis. The distribution of the magnetic
field maxima 𝐵𝑦,max of the magnetic fields generated along the transport axis is shown in Fig. 4.18(b).

Since the magnetic potential is proportional to the magnetic field strength, the maximal magnetic field
is a measure for the trap depth of the magnetic potential during the transport. By solving the differential
equation for an initial atom cloud sampled from a thermal distribution with a temperature corresponding
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(a) (b)

Figure 4.18: (a) Form of the magnetic field 𝐵𝑦 at different positions 𝑦 along the transport axis. Δ𝑦 describes the
distance to the zero crossing of the magnetic field. Due to the different geometries of the coils generating the
magnetic field, the curves have slightly different shapes. The results for the magnetic fields were extracted from
the magnetic transport simulation written by Cedric Wind. (b) Distribution of the magnetic field maxima 𝐵𝑦,max
of the magnetic fields generated along the transport axis 𝑦.

to the root mean square temperature 𝑇 ∼ 290 µK of the measured temperatures 𝑇𝑦 and 𝑇𝑧 in the first
magnetic trap (see Figs. 2.7(c) and 2.7(d)), and with a constant magnetic field gradient of 𝐵′

𝑦 = 35 G/cm,
one can extract the maximal potential energy that each atom reaches in the potential.

The differential equation is solved for 4000 sampeld atoms with the magnetic transport parametrization
𝑦𝑉0

(𝑡) = 𝑦𝑉0
(𝑡, 1.5𝑠, 𝑋1:4,min), for which the backward propagation occurs. From the simulation results

one can extract the maximal distance 𝑦𝐴,max to the trap center reached for each simulated atom. By
multiplying it with the magnetic field gradient 𝐵𝑦𝐴,max

= 𝑦𝐴,max · 𝐵′
𝑦 , one derives a measure for the

maximal potential energy of each atom during the transport, in units of the magnetic field. 𝐵𝑦𝐴,max
describes the maximal magnetic field that is required to trap the atom that reached a maximal oscillation
amplitude of 𝑦𝐴,max. Fig. 4.19 displays the distribution of 𝐵𝑦𝐴,max

for all sampled atoms. The distribution
of the magnetic field maxima in Fig. 4.18(b) shows that the maximal magnetic field strength generated
during the transport is 360 G. Thus, one can conclude that the atoms which have a 𝐵𝑦𝐴,max

> 360 G
would be lost during the transport, since they reach energies greater than the maximally generated
potential trap depth during the whole transport. The trapping threshold of 360 G is indicated by the red
dotted line in Fig. 4.19. It divides the 𝐵𝑦𝐴,max

distribution into two distinct regions. Around 8% of the
initialized atoms lie above the threshold and would thus be lost from the trap.

Fig. 4.20(a) and Fig. 4.20(b) show example trajectories for a randomly chosen atom from the distribution
below the threshold and from above the threshold. Both results show that the atom is shifted back and
forth at the point where the potential minimum is going backwards. However, only for the atom from
the second region above the threshold the backward propagation causes an increase in the oscillation
amplitude for it to be lost from the trap. This demonstrates that the assumption that additional atom
loss is caused by backwards propagation is valid. However, it can not explain the amount of atoms loss

61



Chapter 4 Machine Learning Online Optimization of the Experiment

observed in the experiment, leading to a transport efficiency of only 5%. Even though it is expected that
including all three dimensions and collisions between the atoms in the simulation would influence the
observed dynamics, there still must be other more dominant atom loss mechanisms during the transport.

Furthermore, it was also analyzed if the atom loss due to the backward propagation introduces an
effect similar to evaporative cooling, where all the fast atoms are removed from the ensemble. This could
explain the reduced temperature and decrease in atom number for this parametrization. However, no
indication for this could be observed when comparing the velocity distribution of the simulated cloud
at the start and end point. The same simulation was also repeated for the base function 𝑦err,𝑉0

as the
parametrization for the potential minimum. This did not lead to any atom loss with regard to the defined
condition.

An additional possible atom loss source could be the differential pumping tube placed between the
MOT chamber and the science chamber. The tube has a length of 100 mm and a diameter of 5 mm. If an
atom cloud is not perfectly aligned with the tube’s axis, it may be cut off at the edges. Since the atoms
with higher energies can reach larger distances from the trap center, the cut off at the edge could also
induce an evaporative cooling effect. However, the differential pumping tube is located between 50 mm
and 100 mm from the starting point. In this region the 𝑋1:4,min trajectory only slightly differs from the
𝑋1:2,min trajectory, for which a much larger number of atoms arrive in the science chamber. Therefore, it
can not be completely clarified which mechanism causes the atom loss for the 𝑋1:4,min parametrization.

Additional things that could be tried out, for example, is stitching the initial part of 𝑦𝑉0
(𝑡, 1.5 s, 𝑋1:2,min)

for 𝑡 < 1.1 s together with the end of 𝑦𝑉0
(𝑡, 1.5 s, 𝑋1:4,min). In this way the backward propagation would

be removed but the flattened S-curve would be preserved. Further manual modification could help to
identify the reasons behind the different modulations chosen by the machine learner and the effect they
have on the atom loss and temperature of the atom cloud.

In conclusion, it was possible to steer the optimization by using different cost factor weights 𝑎 and
𝑏. For 𝑎 : 𝑏 = 1 : 1 a maximal transfer efficiency of 30% could be achieved. The lowest atom cloud
temperature was measured for the 𝑋1:4,min magnetic transport realization, but 80% of the atoms are lost
compared to the error function. The result of the optimization run with the weight ratio of 𝑎 : 𝑏 = 1 : 2
seems to be a good trade-off between atom number, temperature and sloshing effects.
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Figure 4.19: Distribution of the maximal magnetic fields required to trap the 4000 sampled atoms from the Monte
Carlo simulation during the simulated magnetic transport. 𝐵𝑦𝐴,max

= 𝑦𝐴,max · 𝐵′
𝑦 , where 𝑦𝐴,max describes the

maximal distance of an atom to the trap center during the transport. The distribution of 𝑦𝐴,max was extracted from
a simplified 1D simulation of the magnetic transport with parametrization 𝑦𝑉0

(𝑡, 1.5 s, 𝑋1:4,min). 𝐵
′
𝑦 = 35 G/cm

𝑦𝐴 is the magnetic field gradient along the transport axis, which was used for the simulation. The red dotted line
indicates the trapping threshold and is located at 𝐵𝑦𝐴,max

= 360 G.

(a) (b)

Figure 4.20: Solution of Newtons equation of motion Eq. (4.7) for an atom trapped in a moving magnetic potential,
which moves along the transport axis according to 𝑦𝑉0

= 𝑦𝑉0
(𝑡, 1.5 s, 𝑋1:4,min). 𝑦𝐴(𝑡) describes the distance

between the position of the trapped atom and the potential minimum position and is thus the oscillation amplitude of
the atom in the comoving frame. (a) Example trajectory for an atom which would stay trapped during the transport
(𝐵𝑦𝐴,max

< 360 G). (b) Example trajectory for an atom which would be lost during the transport (𝐵𝑦𝐴,max
> 360 G).
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Figure 4.21: Contribution of the different frequency components to the optimization results with the weight ratios
𝑎 : 𝑏 = {1 : 1, 1 : 2, 1 : 4} and frequency range {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}. The amplitudes 𝐴𝑘 correspond to the
amplitudes defined in Eq. (4.3) (for 𝑋1:2,min and 𝑋1:1,min) or Eq. (4.5) (for 𝑋1:4,min). The 𝐴𝑘 boundaries describe
the boundaries for each amplitude value during the optimization. The best found parameters are returned without
uncertainties from the machine learner controller.

4.3.3.2 Influence of Modulation Frequency Ranges

In the next step it was analyzed if the modulation frequency range 𝑓 =
{

𝑘 𝜋
1.5 s

}
with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} is

a good choice or if changing the parameter space can give better results. The contribution of the different
frequency components to the optimization results with the weight ratios 𝑎 : 𝑏 = {1 : 1, 1 : 2, 1 : 4}
and frequency range {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} are shown in Fig. 4.21. The defined boundaries for each
amplitude are plotted in gray. For 𝑋1:4,min the 𝐴5 amplitude is near the upper boundary. The rest of the
amplitudes are well below the limits. Since the choice of the boundaries is always a trade of between
optimization time and degree of optimization freedom, the set boundaries seem to be an acceptable
choice. Furthermore, no clear trend between frequency 𝑘 and respective amplitude is visible. Both even
and odd amplitudes contribute, since the resulting curves show no point symmetry. For point symmetric
curves the odd sine amplitudes would be negligible [94]. The highest three frequencies (𝑘 = 13, 14, 15)
only make a minimal contribution in the 𝑋1:1,min and 𝑋1:2,min parametrization. This is a first indication,
that choosing higher frequencies may not be beneficial.

Optimizations with different modulation frequency ranges were tested to see if this assumption
is correct or if the results can be improved further. The magnetic transport optimization was thus
repeated with a cost weighting of 𝑎 : 𝑏 = 1 : 2 and 20 optimization parameters for the frequency
components 𝑓 =

{
𝑘 𝜋

1.5 s
}

with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 20}. The boundaries are chosen again accordingly
to [−20 mm + 0.7 mm · 𝑘, 20 mm − 0.7 mm · 𝑘]. The optimization results are shown in Figs. 4.22(a)
and 4.22(b). The machine learning optimization was stopped again after 11 hours. A larger number
of runs result into a cost of zero or near zero, compared to the optimizations with lower frequencies
and a smaller parameter space. This can be explained by the fact that the parameter space is about five
optimization parameters larger making it more difficult to find a reasonable parameter set. Additionally,
the fast trajectory modulations may cause current modulations that are too rapid for the magnetic field
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to follow. This will be analyzed at the end of this section. The trajectories producing the lowest cost
values do not feature high frequency modulations. For the best found curve the last five amplitudes 𝐴𝑘

have values below 0.5. Furthermore, the best trajectory only lead to a cost of 𝐶 = −1.67 ± 0.05. For the
optimization with frequency range {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} the optimizer found an optimum after 11 hours
with the lowest cost 𝐶 = 2.260 ± 0.008, and was therefore a better and faster optimization. One can
conclude from this run, that a larger parameter space with higher frequencies requires an optimization
run longer than 11 hours. At the same time, it is not clear if higher frequencies will contribute to further
improvements.

To speed up the optimization it was decided to use the previously determined optimal trajectory taking
into account up to 15 frequencies as a base function and let the machine learner only act on higher
frequency contributions. Therefore, the parametrization from Eq. (4.5) is used again. The trajectory
𝑦𝑉0

(𝑡, 1.5 s, 𝑋1:2,min) is defined as the base function. The optimization is repeated once for the frequency
range 𝑓 =

{
𝑘 𝜋

1.5 s
}

with {𝑘 ∈ N|11 ≤ 𝑘 ≤ 20} and once with {𝑘 ∈ N|16 ≤ 𝑘 ≤ 25}. This way it can be
checked if either the larger parameter space of 20 parameters increases the difficulty for the optimizer or if
the modulation with higher frequencies do not lead to good magnetic transport results. The optimization
results, given in Figs. 4.22(c) to 4.22(f), show that the higher frequency ranges did not lead to any
improvement of the initial cost. All trajectories with significant contribution from higher frequencies
result in a cost around zero. The best found parametrization for both optimizations does not differ in
shape from the base function 𝑦𝑉0

(𝑡, 1.5 s, 𝑋1:2,min). This shows that the magnetic transport does not
work properly when the potential minimum trajectory features frequency components above 𝑓 = 15𝜋

1.5 s .
When discussing possible modulation frequency ranges it is also important to characterize the magnetic

field response to such modulations. Because of eddy currents, the magnetic field can not follow changes
in the current that happen too fast. Modulations of the potential minimum trajectory with a certain
frequency do not directly map to modulations of the current traces, and thus the magnetic field, of the same
frequency. However, higher frequencies still cause faster changes of the coil current and thus correspond
to higher current slopes in the current traces. As it is also not possible to map modulation frequencies
directly onto respective current slopes, the generated current slopes from an actual optimization run with
a desired frequency range were sampled. This gives a good estimation for the order of magnitude of the
current slopes. This was done by calculating the current traces for each trajectory that was tested in the
1.5 s magnetic transport optimization run with 𝑎 : 𝑏 = 1 : 2 and {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}. For every coil
pair the highest current slopes were extracted for each parametrization. The current trace of coil 1 and
the SC coil feature the highest maximal current slopes. The sampled distribution of the maximal current
slopes for these two coils is given in Fig. 4.23. The maximal current slopes lie in a broad range between
100 A/s to 14 000 A/s.

The response of the magnetic field to current slopes of this order was tested by measuring the magnetic
response to a triangular current trace with varying slope. Coil 1 was used as the test coil pair because the
highest slopes occurred for these current traces. The maximal and minimal current values are chosen
such that the magnetic field is ramped from 0 G/cm to 130 G/cm and back to 0 G/cm. The current
applied to coil 1 was measured with a current clamp (AC/DC Current Clamp CC-65 from Hantek [95]).
The magnetic field generated by coil 1 was measured with a fluxgate magnetic sensor (Automative, Fully
Integrated Fluxgate Magnetic Sensor DRV425-Q1 [96]), with a slew rate of 6.5 V/µs [96], placed above
the coil. The current traces and the magnetic field responses for different applied current ramps are
shown in Fig. 4.24. The magnetic field does not drop to zero when no current is applied due to the
Earth’s magnetic field [97]. However, in Fig. 4.24 the offset is substracted such that the magnetic field 𝐵
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only describes the magnetic field generated by the coils. For a supplied current ramp with slope 100 A/s,
the magnetic field can follow the current trace nicely with no time delay. It reaches its maximal measured
B field strength of 2.9 G with a B field slope of ∼ 4.0 G/s. The value of the maximal measured magnetic
field strength is not relevant for this analysis, as it mostly depends on the sensor distance and orientation
to the coil. The magnetic field response is already delayed for a current ramp with a slope of 500 A/s.
The magnetic field is ∼ 8% slower than expected for an instantaneous response. When further increasing
the slope of the current control signal, the magnetic field response gets further delayed, up to a ∼ 78%
slower response for a current slope of 10 000 A/s. For the falling slope it is also visible that the magnetic
field response is not linear anymore due to the induced eddy currents. Thus, one can conclude that up to
current slopes around 500 A/s the magnetic field can follow the control current sufficiently with small
deviations of ∼ 8%. However, the analyzed optimization run featured many parameters with maximal
current slopes in the range of 1 000 A/s-8 000 A/s, where the magnetic field response is significantly
delayed. Thus, for optimization runs with frequency components in the range of {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}, the
magnetic field can not perfectly follow the control signal. For the simple error function 𝑦err,𝑉0

a maximal
current slope of 838 A/s appears in the current trace of coil 1. The generated magnetic fields are thus
already noticeably altered by the eddy currents for the base function in use. The real trajectory of the
potential minium during the magnetic transport will therefore differ from the theoretical trajectories 𝑦𝑉0

.
This again highlights the benefit of using a machine learning algorithm for optimization. The machine

learner optimizes based on the received feedback and learns about the best realizations by indirectly
taking into account the difference between the theoretical and real trajectories. For optimization runs
with higher frequency components, maximal current slopes above 1 000 A/s occur more often. Although
the algorithm can learn about the influence of different frequency ranges, trying out higher modulation
frequencies does not seem promising overall and would reduce the efficiency of the optimization process.
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Figure 4.22: Optimization results for the 1.5 s magnetic transport with the parametrization from Eq. (4.3), the
cost weight ratio 𝑎 : 𝑏 = 1 : 2 and different frequency ranges. The left column shows the cost curves. Each
run number corresponds to a new parameter set. The right column shows all tested trajectories during the
corresponding optimization. The optimizations were conducted with frequency ranges 𝑓 =

{
𝑘 𝜋

1.5𝑠
}

with (a)+(b)
{𝑘 ∈ N|1 ≤ 𝑘 ≤ 20} (c)+(d) {𝑘 ∈ N|16 ≤ 𝑘 ≤ 25} (e)+(f) {𝑘 ∈ N|11 ≤ 𝑘 ≤ 20}. The large uncertainties for some
of the runs are due to some unknown disturbance in the experiment that sometimes lead to a failed experimental
cycle.
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Figure 4.23: Distribution of the maximal current slopes of (a) coil pair 1 and (b) SC coil for all current traces
generated during the 1.5 s magnetic transport optimization run with 𝑎 : 𝑏 = 1 : 2 and {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}. For
each tested parameter set during the optimization, the current traces were generated and the maximal slopes
extracted.

Figure 4.24: Magnetic field response of coil 1 to different applied current slopes. For the measurement a triangular
current ramp is generated by the analog ADwin output and applied to coil 1. The current applied to coil 1 was
measured with a current clamp (green curve) and the magnetic field generated by coil 1 was measured with a
fluxgate magnetic sensor placed above the coil (blue curve). Uncertainties are not displayed for the sake of clarity.
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4.3.3.3 Influence of Magnetic Transport Duration

For the previous optimization runs the transport time was fixed at 𝑇MT = 1.5 s. This section will
discuss if a longer magnetic transport time of 𝑇MT = 2 s may be more beneficial. The characterization
measurements for the 2 s magnetic transport with the error function 𝑦err,𝑉0

(𝑡, 2 s) as parametrization,
described by the parameter set 𝑋0,2 s, is shown in Fig. 4.26 and summarized in Table 4.3. The sloshing

𝑋 𝜂𝑇
𝜎𝑥 (𝑋0,𝑇MT

)−𝜎𝑥 (𝑋min )
𝜎𝑥 (𝑋0,𝑇MT

)
𝜎𝑦 (𝑋0,𝑇MT

)−𝜎𝑦 (𝑋min )
𝜎𝑦 (𝑋0,𝑇MT

) 𝑇𝑥 (𝑋min)/µK 𝑇𝑦 (𝑋min)/µK 𝑆𝑦,max(𝑋min)/mm

𝑋0,2 s (26.9 ± 2.9)% - - 136 ± 6 271 ± 19 ∼ 0.17
𝑋

1
1:2,min,2 s (26.5 ± 2.9)% 9.5% 13.3% 134.7 ± 1.4 203 ± 8 ∼ 0.24

𝑋0,1.5 s (25.0 ± 2.5)% - - 117 ± 5 410 ± 70 ∼ 0.38
𝑋1:2,min,1.5 s (26.5 ± 2.6)% 10.1% 18.1% 120.6 ± 2.0 189 ± 9 ∼ 0.20

Table 4.3: Comparison of characterization measurements for the 2 s and 1.5 s magnetic transport. 𝑋1:2,min,𝑇MT
is the best found parameter set for the optimization run with magnetic transport duration 𝑇MT, frequency range
𝑓 =

{
𝑘 𝜋
2 s

}
with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and cost weights 𝑎 : 𝑏 = 1 : 2. 𝑇𝑥,𝑦 are the temperatures along the 𝑥- and

𝑦-direction and 𝑆𝑦,max describes the maximal sloshing amplitude along the transport axis, extracted from the

characterization measurements.
𝜎𝑥,𝑦 (𝑋0,𝑇MT

)−𝜎𝑥,𝑦 (𝑋min )
𝜎𝑥,𝑦 (𝑋0,𝑇MT

) describes the relative improvement of the cloud widths for
the best found trajectories compared to the magnetic transport realization with the initial parameter set 𝑋0,𝑇MT

,
describing the base function 𝑦err,𝑉0

for different magnetic transport times 𝑇MT.

amplitude is reduced compared to the 1.5 s transport. The temperature in 𝑦-direction is also significantly
reduced while the temperature for the 𝑥-direction is slightly increased. The lower temperature and
sloshing in transport direction could be a result of the lower maximal trap potential velocity. For 1.5 s
transport the maximal velocity is 339 mm/s, while for the 2 s the trapping potential is accelerated to a
maximal velocity of 254 mm/s. The atoms are transported slower along the transport axis, inducing
less sloshing when the potential minimum stops in the science chamber. Furthermore, the transport
efficiency for the 2 s transport is slightly increased to the transport efficiency for the 1.5 s transport. This
shows that the loss of atoms from the trap is not dominated by their finite lifetime, since in this case a
longer trapping duration would correspond to fewer atoms remaining in the trap. Therefore, other loss
mechanisms which are influenced by the acceleration of the potential along the transport axis must be
dominating. In summary, the 2 s long magnetic transport parametrized with the error function performs
better than the magnetic transport with the same parametrization but a shorter duration of 1.5 s.

However, the optimized magnetic transport trajectory 𝑦𝑉0
(𝑡, 1.5 s, 𝑋1:2,min) gives comparable results

to the 2 s magnetic transport with 𝑦err,𝑉0
(𝑡, 2 s). The transport efficiency is similar, and the temperature

is even lower for the optimized 1.5 s transport curve. This shows, that the magnetic transport with a
duration of 2 s is not necessarily better.

The results of the machine learning based optimization with 𝑇MT = 1.5 s showed that the error function
𝑦err,𝑉0

is not the best parametrization for the transport. To see if the performance of the 2 s transport
can also be further improved by modifying the error function, the optimization routine was repeated for
the longer transport. The same parametrization, as defined in Eq. (4.3), was chosen. The frequency
range was set to 𝑓 =

{
𝜋𝑘
2 s

}
, with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}. The cost factors are weighted with 𝑎 : 𝑏 = 1 : 2.

The optimization was repeated two times, to check the reproducibility of the optimization results. The
respective cost curves of the optimization are given in Fig. A.3(a) and Fig. A.3(b) in the appendix.
The best found transport trajectories with their respective velocity profile can be found in Figs. 4.25(a)
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(a) (b)

Figure 4.25: Comparison of the optimization results for the 2 s magnetic transport with frequency range 𝑓 =
{
𝑘 𝜋
2 s

}
with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and cost factor weights 𝑎 : 𝑏 = 1 : 2. (a) Best found trajectories during both
optimizations, 𝑋1

1:2,min,2 s and 𝑋2
1:2,min,2 s. (b) Velocity profiles for 𝑋1

1:2,min,2 s and 𝑋2
1:2,min,2 s. The parameter set 𝑋0

describes the error function 𝑦err,𝑉0
.

and 4.25(b). Both optimization runs converged to quite similar trajectories with the same cost values
within their uncertainties. One curve result gives a cost of 𝐶 (𝑋2

1:2,min,2 s) = −2.23 ± 0.06, while the
second curve returns a cost of 𝐶 (𝑋1

1:2,min,2 s) = −2.129± 0.011. Thus, both curves are a good realization
of the magnetic transport and can further reduce the cost function compared to the error function 𝑦err,𝑉0

.
The trajectories overlap almost perfectly for the last 0.5 s. Similar to the results of the 1.5 s transport,

the end of the trajectory is therefore the most crucial part. During the beginning and middle of the
transport the points of acceleration and deceleration are slightly shifted in time and magnitude but follow
a similar shape. When comparing the curves to the error function, it is striking that they show a steeper
S-curve shape at the transport end with no plateau. For the 1.5 s optimization run a flat S-curve like
shape seemed to be a cause for a lower measured 𝑇𝑦 value. Since the 2 s error function already leads to
lower 𝑇𝑦 values, this may have less of an impact for this optimization.

The characterization measurements for 𝑦𝑉0
(𝑡, 2 s, 𝑋1

1:2,min) (see Figs. 4.26(d) to 4.26(f)) lead to a 𝑇𝑦 of
(203± 8) µK. This is comparable, within the uncertainties, to the temperatures reached by the optimized
1.5 s trajectory with 𝑋1:2,min,1.5 s. However, the sloshing amplitude for 𝑋1

1:2,min,2 s is increased compared
to the 2 s error function. This is presumably due to the fact that the velocity of the potential minimum is
not smoothly decreased. This can be seen in Fig. 4.25(b), where the velocity curve does not reach zero at
the end of the transport. The potential minimum is thus stopped abruptly at the end, leading to a larger
sloshing of the atoms. Furthermore, it was not possible to improve the atom number with the machine
learning optimization. Since the algorithm converged twice to quite similar trajectories, it seems that it
was not possible to find a better parametrization with the given configuration.

One can thus conclude that the error function for the 2 s magnetic transport, is better suited for the
transport than the same parametrization for a shorter transport duration. It also seems to be closer to the
achievable optimum. The machine learning optimization could only further improve the temperature
value along the transport axis 𝑇𝑦 . However, the simple error function 𝑦err,𝑉0

(𝑡, 2 s) and the trajectory
𝑦𝑉0

(𝑡, 2 s, 𝑋1:2,min) found by the machine learner could not further improve the results gained with a
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magnetic transport duration of 1.5 s. Since it is beneficial to have a shorter total experimental cycle, the
optimized 1.5 s magnetic transport is a better choice for the experiment.

(a) (b) (c) Sloshing 2s transport default

(d) (e) (f)

Figure 4.26: Characterization measurements quantifying the performance of the 2 s magnetic transport with (a)-(c)
𝑦err,𝑉0

(𝑡, 2 s) and (d)-(f) 𝑦𝑉0
(𝑡, 2 s, 𝑋1

1:2,min). The characterization measurements consist of a TOF measurement in
the science chamber and the measurement of the displacement of the cloud center 𝑦𝑐 along the transport axis for
different holding times 𝑡hold, SC in the SC trap after the magnetic transport. 𝜎𝑥,𝑦 describes the cloud width along
the 𝑥- and 𝑦-axis. The temperatures are extracted by fitting Eq. (2.1) to the data. The sloshing measurements are
averaged over 10 loops and the TOF measurements are averaged over 20 loops.
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CHAPTER 5

Characterization of Rydberg Ion Detection

The successful Rydberg excitation can be verified by field ionizing the Rydberg atoms and detecting the
generated ions with a microchannel plate (MCP). The experimental setup and sequence for Rydberg
ionization and subsequent detection were introduced in Section 2.3. In Section 5.1 the ion detection
setup is described in more detail. After this the characterization of the MCP is discussed in Section 5.2.
The ion detection characterization was done with the aim to reliably determine the detection efficiency
of the setup.

5.1 Ion Detection Setup

A Rydberg ion generated in the science chamber by field ionization is detected with the Microchannel
plate (F4655-11 from Hamamatsu Photonics K.K. [68]). The setup for ionization and subsequent
detection via the MCP is shown in Fig. 2.14. The MCP is a two-dimensional, multi-channel electron
multiplier which can detect single ions, electrons, UV rays, X-rays and gamma rays in vacuum [68]. The
working principle of the MCP is shown in Fig. 5.1. The MCP contains several channels placed next to
each other on a circular plate. Each channel acts as an independent electron multiplier. An ion entering a
channel causes the emission of secondary electrons. These electrons are accelerated due to the potential

Figure 5.1: Working principle of the microchannel plate (MCP) used for the detection of the ion signals. The left
image shows the MCP, consisting of several channels placed next to each other on a circular plane. The right
image shows the amplification of an incident electron in a single channel. The images are taken from [68].
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Figure 5.2: Signal path of the MCP signal to the Time Tagger. The MCP signals are attenuated and then pass a
first stage of protection diodes, used to clamp positive and negative voltage spikes. After being amplified they pass
the second protection diodes, which protect the Time Tagger from negative voltage spikes.

gradient between the channel input and output side generated by the applied voltage 𝑉𝐷 . While travelling
through the channel, the electrons hit the channel wall repeatedly and produce more secondary electrons
leading to an electron cascade. The amplified signal is then read out by an anode placed behind the
MCP [98]. Fig. 5.1 shows the working principle of a single channel and indicates that the channels are
perpendicular to the plate surface. In reality, the channels are angled with a bias angle that optimizes the
detection efficiency. The MCP used in the experiment is a two-stage MCP. It consists of two MCP units
placed behind each other. Their channel axes are enclosing an angle corresponding to their bias angle. A
two-stage MCP can minimize the signal-to-noise ratio compared to a single-stage MCP. The channels of
the MCP have diameters of 12 µm and the maximal supply voltage is 2 kV [68].

In the experimental setup, the readout signal from the anode is connected to the Time Tagger. Ions are
detected by measuring voltage spikes in the anode signal resulting from the electron cascade. Therefore,
the voltage spikes have negative amplitudes. As the voltage spikes may exceed the damage threshold of
the Time Tagger, the MCP signals cannot be sent directly to the Time Tagger. The Time Tagger takes as
input signals between −0.3 V and 5 V. It is recommended that the input signal is within the range of
0 V − 3 V. The Time Tagger trigger level can be set to values between 0 V − 2.5 V.

To prevent damaging the Time Tagger a protection circuit (see Fig. 5.2), built by Cedric Wind, is
inserted between the MCP and the Time Tagger. The first set of protection diodes (1SS315(TPH3,F)
from Toshiba) clamp positive and negative voltage spikes, to protect the RF amplifier (ZX60-6013E-S+
from Mini-Circuit). The amplifier inverts the negative MCP signals and amplifies them. The amplified
signals then pass a second set of 6 protection diodes. This protects the Time Tagger from voltage
undershoots that exceed the allowed voltage range.

For signals outside the amplifier’s bandwidth, impedance matching is not ensured anymore what
leads to reflections at the amplifier. The reflected signal travels back to the MCP along the ∼ 2 m long
SMA cable, is reflected a second time at the MCP due to impedance mismatch and thus returns to the
protection circuit. The signal can thus be detected a second time by the Time Tagger. With a typical
relative velocity of propagation of around 69% in such an SMA cable and an additional propagation
length around ∼ 4 m, the back reflected signal is expected to be delayed by ∼ 20 ns. An exemplary MCP
signal triggered by a Rydberg ion and passing the protection circuit is shown in Fig. 5.3. The signal
was measured with an oscilloscope which is connected to the end of the protection circuit instead of
the Time Tagger. The signal resulting from a real ion count is the one that occurs at 0 ns. The signal
around 25 ns has a significantly lower positive amplitude and causes an undershooting. The delay time
is of the same order as the expected delay time of a back reflected signal. It can therefore be assumed
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Figure 5.3: Example MCP signal triggered by a Rydberg ion. The signal was measured with the setup shown in
Fig. 5.2, but instead of using the Time tagger to count the signals, an oscilloscope was connected to measure the
analog signal. The attenuator in the protection circuit was removed for this measurement. The signal at 0 ns is the
real ion signal. The back reflection of the ion signal is measured with a delay of 25 ns.

that the second signal is triggered by the back reflection of the real ion signal. A third signal with an
even lower amplitude is detected around 50 ns and probably arises from a second back reflection process.
These back reflections were observed for the majority of the ion signals during the measurement with the
oscilloscope. These signals can contribute to fake counts, which can falsify the Time Tagger’s counting
statistics. Furthermore, some of the reflected signals featured an undershooting signal with an amplitude
smaller than −0.3 V. To suppress the back reflected signal an attenuator is inserted before the protection
circuit, as can be seen in Fig. 5.2. Since the back reflected signal passes the attenuator two more times
compared to the real ion signal, it gets further suppressed.

The diode protection circuit was tested and characterized by Cedric Wind. The influence of the first
amplifier stage on the signal amplitudes and subsequent data acquisition with the Time Tagger was
analyzed in this thesis and will be discussed in the following.

5.2 Characterization Measurements

Fig. 5.3 shows the output signal from the MCP anode after the protection circuit. From the figure it is
apparent that the measured ion counts stem from real ions and from back reflection spikes. The number
of counts depends on different system parameters of the detection setup and the signal processing. The
Time Tagger trigger voltage determines how many voltage spikes are counted, and whether noise gets
filtered out. The MCP supply voltage affects the internal gain of the ion signal, thereby influencing
the amplitude of the MCP signal [68]. Additionally, the choice of MCP signal attenuation determines
the overall height of the MCP signal as well as the relative height between the main peak and the back
reflection peaks. Therefore, in the next step, the number of detection events is analyzed for different
settings of these system parameters.

To do so the Rydberg excitation and detection cycle was started and the Time Tagger trigger level was
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(a) (b)

Figure 5.4: Ion counts per Rydberg excitation pulse, measured with the Time tagger. For the measurement
the sequence described in Fig. 2.15 was started, and the Time tagger trigger level was scanned within it. The
dashed line shows the background signal, measured during the second 1000 pulses in the Rydberg sequence. (a)
Measurement results with different MCP voltages 𝑉MCP. For all measurements an attenuator with attenuation
factor 𝐴 = −11 dB was used. The datapoints are averaged over 6000 pulses. (b) Measurement results with the
MCP voltage set to 𝑉MCP = 2 kV and different attenuators 𝐴. The datapoints are averaged over 28 · 103 pulses.

scanned during the sequence. The results are shown in Fig. 5.4(a). The measurement window of the
Time Tagger is indicated in Fig. 2.15 by the duration of the Time Tagger trigger. The control laser was
detuned by Δ𝐶 = −45 MHz and the probe laser was detuned by Δ𝑃 = 44.7 MHz for the measurement, to
drive the off resonant two-photon Rydberg excitation. The ionization voltage was set to 490 V and the
deflection voltage to 184 V during the ionization sequence. The measurement was repeated with different
MCP supply voltage and a −11 dB attenuator. The solid datapoints describe the averaged number of
ion counts measured per pulse. One pulse corresponds to one Rydberg excitation pulse and subsequent
detection of the Rydberg ion with the MCP. The dashed lines correspond to the averaged background
counts measured per pulse when no atoms are present anymore. The datapoints were averaged over 6000
measurements. As expected, the counting rate decreases with increasing trigger level. For trigger levels
above ∼ 30 mV a higher supply voltage results in a larger number of counts. As mentioned before, a
higher MCP supply voltage causes an increase of the signal gain in the MCP [68]. Thus, small signals
can still be amplified enough such that they lie above the trigger level and are detected by the Time
Tagger. However, the smaller the chosen threshold the less difference an increased signal gain makes
and thus all curves in Fig. 5.4(a) approach a value between 0.28 and 0.29 counts per pulse. For trigger
thresholds below 10 mV the noise is not filtered out anymore, as indicated by the small increase in
background counts. The MCP supply voltage does not significantly influence the noise contribution.
As the ion counts do not saturate at higher MCP voltages and the noise does not increase significantly
with the supply voltage, it was decided to operate at the maximum MCP supply voltage of 2.0 kV to
maximize the detection efficiency.

In the next step, the influence of different attenuators is analyzed to further improve the signal-to-noise
ratio. The trigger level scan was repeated for a smaller scan range with a MCP supply voltage of
2.0 kV. Three measurements with the different attenuators 𝐴 = {−8 dB,−10 dB,−12 dB} are shown in
Fig. 5.4(b). The count rates for all measurement decrease similarly as the trigger threshold is lowered.
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(a) (b)

Figure 5.5: The maximal (a) and minimal (b) amplitudes of the MCP signals measured after the protection circuit
with an 12 dB attenuator and an MCP voltage of 2 kV. The trigger level of the oscilloscope was set to 25 mV. The
maximal and minimal amplitudes correspond to the amplitudes measured in a time window of 100 ns after the
trigger signal. 200 events were triggered during the measurement time.

The three cases mainly differ for trigger levels below 10 mV. In this regime the noise contributes with
up to 0.025 counts per pulse, for attenuation factors of 𝐴 = −8 dB and 𝐴 = −10 dB. However, for higher
attenuation the noise is sufficiently suppressed, without decreasing the real ion counts per pulse. Thus,
the best signal-to-noise ratio is achieved with an MCP supply voltage of 2 kV and a −12 dB attenuator
before the protection circuit. A Time Tagger trigger level of 10 mV seems suitable for these settings,
since the number of counts does not increase significantly at lower trigger thresholds.

With the discussed parameters for gain, threshold and attenuation a histogram of maximal and minimal
signal amplitude behind the protection circuit was measured with an oscilloscope (WavePro 735Zi
Oscilloscope from TELEDYNE LECROY [99]). The results are shown in Fig. 5.5. The trigger threshold
of the oscilloscope for starting the measurement was set to 25 mV, since lower thresholds were not
possible. The maximum and minimum amplitudes correspond to the maximum and minimum amplitudes
measured during a time interval of 100 ns after the trigger, including the trigger signal itself. The
measurements show that, the protection circuit combined with a −12 dB attenuator and an MCP voltage
of 2 kV does not cause the signal amplitudes to exceed the Time Tagger’s damage threshold, which
ranges from −0.3 V to 5 V. This configuration thus fulfills the requirements for protecting the Time
Tagger and at the same time maximize the detection efficiency.

However, the characterization does not yet rule out the occurrence of fake counts due to back reflections.
To further analyze possible correlations in the ion signals, the 𝑔2(𝜏) function for the time dependent
Time Tagger signal 𝑒(𝑡) is measured. The Time Tagger counts the number of pulses received during a
set time window after being triggered, with a time resolution of 60 ps. It stores the counts measured
during the time window in a histogram, enabling time-resolved measurement. 𝑒(𝑡) describes the number
of counts measured in time bin 𝑡. The starting point of the measurement with the Time Tagger is set to
𝑡 = 0. The 𝑔2(𝜏) function, inspired by the photon second-order correlation function [100], is defined as

𝑔2(𝜏) =
∑

𝑡 ,𝑡
′ |𝜏=𝑡−𝑡 ′ ⟨𝑒(𝑡) · 𝑒(𝑡

′)⟩P∑
𝑡 ,𝑡

′ |𝜏=𝑡−𝑡 ′ ⟨𝑒(𝑡)⟩P · ⟨𝑒(𝑡′)⟩P
, (5.1)
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(a) (b)

Figure 5.6: Measurements of the 𝑔2 (𝜏)-function (see Eq. (5.1)) for the time dependent Time Tagger signal. (a)
Result for a measurement with an ionization voltage of 𝑉I = 500 V. The datapoints are averaged over 360 · 103

Rydberg pulses. (b) Close up of the 𝑔2 function for different ionization voltages 𝑉I. The datapoints are averaged
over 240 · 103 Rydberg pulses.

where ⟨·⟩P describes the average over all pulses during the measurement sequence. The 𝑔2(𝜏) function
can be interpreted as the conditional probability of detecting two ions with a time difference of 𝜏,
normalized by the probability of detecting them independently at their respective times. If ions arrive
independently of each other with a time delay of 𝜏, then 𝑔2(𝜏) = 1. When 𝑔2(𝜏) > 1 the probability of
detecting two ions with a time difference of 𝜏 is increased, whereas when 𝑔2(𝜏) < 1 it is decreased. By
definition 𝑔2(𝜏 = 0) =

∑
𝑡 Var[𝑒 (𝑡 ) ]+⟨𝑒 (𝑡 ) ⟩2

P∑
𝑡 ⟨𝑒 (𝑡 )

2 ⟩P
≫ 1, since the variance Var[𝑒(𝑡)] > 0. The 𝑔2(𝜏) function

for a measurement with 𝑉MCP = 2 kV, a −12 dB attenuator and a Time Tagger threshold of 10 mV is
shown in Fig. 5.6(a). The measurement was repeated for 360 · 103 Rydberg excitation/detection pulses.
A potential of 500 V was applied to the ionization electrode, and 185 V to the deflection electrode.

The 𝑔2-function is 0 for times smaller than 6 ns. This is expected, since the Time Tagger has a dead
time of 6 ns. Therefore, ions arriving with a time delay shorter than this can not be detected. At 𝜏 = 7 ns
the 𝑔2-function features a peak. Fig. 5.6(b) shows a close up of the 𝑔2 function, for different applied
ionization voltages, where the peak is more clearly visible. When analyzing the analog MCP signals on
an oscilloscope, it was never observed that two signals arrived with a time delay of ∼ 7 ns. Therefore, it
is not expected that this peak is due to back reflections. The measurement was repeated with different
trigger levels, but the peak did not disappear. Furthermore, a similar peak was observed in the MCP
signal of the ’Ytterbium Quantum Optics’ (YQO) laboratory of the NQO research group [101]. This
experiment uses a similar MCP and the same Time Tagger. It is therefore assumed that the peak may be
caused by the Time Tagger itself and is possibly a consequence of dead time induced artifacts.

In the time interval 7 ns < 𝜏 < 50 ns the 𝑔2 value is slowly increasing, crosses 1 around 25 ns and
reaches a maximum around 50 ns with 𝑔2(50 ns) > 1. For longer delay times the 𝑔2 function decreases
again and slowly approaches 1. The reason for this could be that ions created close together repel each
other, causing the ions to arrive with a time delay 𝜏′. Thus, when detecting one ion at the MCP it is less
probable to detect a second ion shortly afterward, leading to 𝑔2(𝜏 < 𝜏

′) < 1. The second ion will arrive
with a higher probability after 𝜏′, leading to 𝑔2(𝜏 ≈ 𝜏

′) > 1. The delay time 𝜏′ depends on the ions

77



Chapter 5 Characterization of Rydberg Ion Detection

(a) (b)

Figure 5.7: Results for a Rydberg sequence with control detuning set to ΔC = −45 MHz. (a) Number of ions per
pulse detected with the MCP. (b) Calibrated number of photons measured with the SPCM. These measurements
are used for extracting the detection efficiency of the ion detection setup. The datapoints are averaged over 16 · 103

pulses.

initial positions and the interaction time. The latter can be influenced by changing the ionization voltage
𝑉𝐼 . A lower ionization voltage corresponds to a lower acceleration of the ions and thus leads to a longer
time of flight to the MCP. This results into a longer interaction time between ions and presumably a
larger delay 𝜏′ between ions created close to each other. Fig. 5.6(b) shows the 𝑔2 function measured for
four different ionization voltages between 500 V and 210 V. The deflection voltages had to be adapted
accordingly for each ionization voltage to ensure that the ions are still deflected towards the MCP. The
point where the 𝑔2 function crosses the 1 is shifted to larger times for lower ionization voltages. This is
expected, as it corresponds to a larger delay time 𝜏′. The same holds for the point where 𝑔2 reaches its
maximum. This measurement is an indication that the assumption about the increase in 𝑔2 up to a value
above 1 could result from the Coulomb repulsion between the ions. However, for a more quantitative
comparison the experimentally measured 𝑔2-function should be compared to simulations of the ion
trajectories while taking into account interactions between the different ions.

Furthermore, it must be noted that no additional peak occurs around 𝜏 ≈ 25 ns. This would be
expected if the back reflected signals would still contribute to the counting statistic of the Time Tagger.
To ensure that a possible peak around 𝜏 ≈ 25 ns is not hidden under the correlation bump due to the
Coulomb repulsion, the measurement was repeated with a 4 m SMA cable instead of 2 m long cable.
Back reflected signals would now occur after ∼ 50 ns. However, the measurement did not show an
additional increase in the 𝑔2 function around 50 ns. Thus, one can conclude that the chosen configuration
for the ion detection successfully suppresses fake counts caused by back reflections.

In the next step, the detection efficiency of the ion detection setup can be determined. This is done by
comparing the probe transmission signal, measured with the SPCM, with the ion signal for off resonant
two-photon Rydberg excitation. Fig. 5.7(b) shows the probe transmission signal with the control detuning
set to ΔC = −45 MHz, averaged over 16 · 103 pulses. The photon number is calibrated by taking into
account the fiber coupling efficiencies to the SPCM and the quantum efficiency of the counter. The
probe transmission dip at ΔP = 45 MHz results from the off resonant Rydberg excitation. The dip lies
inside the broad probe transmission valley. A full transmission valley measured with the given setup can
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be found in Julia Gamper’s Master’s thesis [40]. Because of this, the photon number on both sides of
the dip is smaller than for the reference measurement, shown by the dotted lines. At ΔP = 45 MHz the
photon number per pulse is reduced by additional 𝑁Ph,ΔP=45 MHz = 1.24 ± 0.09 photons, compared to
measurements with control light turned off. Thus, approximately 1.24 Rydberg atoms are created per
pulse. However, only 𝑁I,ΔP=45 MHz = 0.208 ± 0.004 signals are measured by the Time Tagger per pulse

at ΔP = 45 MHz. This results in a detection efficiency of 𝐷 =
𝑁I,ΔP=45 MHz

𝑁Ph,ΔP=45 MHz
= 0.168 ± 0.012 of the ion

detection setup composed of MCP, protection circuit and Time Tagger. 16.8% of the Rydberg atoms
created inside the science chamber can thus be detected with the current ion detection setup.

The measured detection efficiency 𝐷 includes the ionization probability, the efficiency for deflecting
the ions towards the MCP, the MCP detection efficiency and the efficiency to convert MCP signals into
Time Tagger counts. The detection efficiency of the MCP itself is only given for other ion species than
Rubidium and is ranging between 4% and 85% for these species [98]. Therefore, it is difficult to ascertain
whether the determined detection efficiency falls within an appropriate range. In the YQO experiment,
with a similar MCP and Time Tagger setup, a detection efficiency of around 57% was achieved for the
detection of Ytterbium ions. They also observed that the MCP detection efficiency differs across the
active area of the MCP [101]. Since no additional steering electrodes are implemented in the HQO room
temperature ion detection setup, it is not possible to optimize the detection with respect to that. However,
the design for the ionization inside the cryogenic environment will feature additional electrodes. Thus,
further characterization and optimization of the ion detection must be conducted with the future setup.
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Conclusion

In this thesis, a machine learning based optimization method was implemented into the HQO experiment
and was applied for the optimization of the MOT and the magnetic transport. Additionally, the detection
of the Rydberg atoms through ionization and subsequent detection via a microchannel plate was
characterized.

The implemented machine learning online optimization routine is based on the M-LOOP Python
package [21]. In order to apply the optimization algorithms, implemented in the package, the internal
machine learning cycle and the experiment cycle of the HQO experiment had to be coordinated.
Communication between the machine learner controller and the experiment control was achieved by
introducing an additional interfacing layer, to which both controllers have access. The aim of the
information exchange between both controllers is to continuously generate new data points during the
optimization process. Each new datapoint consists of a parameter set 𝑋 , which describes the new
optimization parameter values generated by the machine learner, and a respective cost value 𝐶 (𝑋),
which is produced by the experiment. The input parameters 𝑋 are transferred to the experiment by
allowing the machine learner controller to overwrite parameter files, which are used by the experiment
control to build a new model of the experimental sequence. The corresponding cost value is extracted
from the absorption images taken at the end of the respective experimental run, to characterize its
performance. The cost value is conveyed to the machine learner by saving the absorption images in a
database accessible to the machine learner controller. This made it possible to successfully combine the
machine learning cycle and the experimental cycle, achieving online optimization.

The optimization routine was first tested for the MOT optimization, describing a simple optimization
problem with the aim to maximize the number of trapped atoms. The parameters that were optimized
included the frequency and power of the Cooler and Repumper lasers, and the MOT magnetic field
gradient. The optimization process was conducted for the two machine learning algorithms implemented
in the M-LOOP package: the neural network and the Gaussian process. Both algorithms returned results
that are similar to the one found during manual optimization. However, the Gaussian process converged
more quickly than the neural network.

In the next step the machine learning online optimization was applied to the optimization of the
magnetic transport in the HQO experiment. The transport connects the MOT chamber, where the atoms
are loaded from Rubidium background gas and initially cooled down, with the Science chamber, which
will host the atom chip. The magnetic transport is realized by trapping the atoms in a magnetic field
and displacing the trapping potential along the transport axis. The implementation of the magnetic
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transport in the experiment allows controlling the transport by defining a time dependent trajectory for
the magnetic trap center along the transport axis. Therefore, the optimization of the magnetic transport
can be formulated as the task of finding an optimal time profile for the potential minimum trajectory. The
parametrization of the potential minimum trajectory for the optimization process was built by defining a
base function, adapted from [55], and enabling the machine learner to add modulations in the form of a
finite sine series. Furthermore, a cost function had to be defined to characterize the performance of the
experiment with respect to the optimization task. The magnetic transport optimization had two goals,
namely to increase the transfer efficiency 𝜂T from MOT chamber to science chamber, and secondly to
decrease heating effects and sloshing at the end of the transport. The transfer efficiency can be quantified
by extracting the atom number from the absorption images taken shortly after the transport. The atom
cloud widths, extracted from the same absorption images, can be used as a measure for the sloshing and
temperature of the atom cloud after the transport. The cost function was then defined as the product of
the scaled atom number and the inverse of the scaled cloud widths. Furthermore, the weighting factors
𝑎 and 𝑏, for atom number cost factor and cloud width cost factor respectively, were introduced. This
allows to control the contribution of each of the two cost factors to the total cost independently.

The influence of different weighting factors on the optimization process was analyzed. For balanced
weight factors 𝑎 = 𝑏 = 1, the optimizer found a new potential minimum trajectory with the highest
transfer efficiency of 𝜂T = 30%, what corresponds to 3 · 108 atoms arriving in the science chamber.
Giving more weight to the cost factor of the cloud width, by choosing 𝑎 : 𝑏 = 1 : 4, could reduce the
temperature fit value 𝑇y for the 𝑦-axis by a factor of ∼ 3.2, compared to the base function. However,
the best trajectory found in this optimization run led to 80% more atom loss. An additional atom loss
mechanism may be introduced by larger acceleration phases during this realization, what was analyzed
with a simplified 1D Monte Carlo simulation. However, due to the complexity of the transport system,
the cause for the observed atom loss could not be determined with certainty. The results gained during
an optimization run with weight factor ratio 1 : 2 are a good trade-off, resulting in a transfer efficiency of
𝜂𝑇 = (26.5 ± 2.6)%, 50% reduced maximal sloshing amplitude at the transport end and less heating
effects leading to 𝑇𝑥 = (120.6 ± 2.0) µK and 𝑇𝑦 = (189 ± 9) µK. Furthermore, different frequency
ranges for the modulation terms of the finite sine series and a longer transport time were tested. However,
this did not lead to further significant improvement.

Furthermore, the Rydberg ion detection setup was characterized. The Rydberg ions are measured via
an MCP, and the signals are processed and counted with a streaming time-to-digital converter, called
Time Tagger. The setup was analyzed with respect to the MCP supply voltage, the Time Tagger trigger
threshold and different attenuators inserted in the signal path between MCP and Time Tagger. After the
characterization, a detection efficiency of (16.8 ± 1.2)% was determined.

In the next steps, the successfully integrated machine learning online optimization routine can be
easily adapted for the optimization of different parts in the experimental sequence. This will significantly
reduce the time needed for optimizations in the HQO experiment and make them more efficient. One
application that could benefit from machine learning based optimization is the loading sequence for
transferring atoms from the last quadrupole trap to the Z-wire trap on the atom chip. The transfer
sequence was already simulated in Leon Sadowski’s Master’s thesis [60]. However, using the direct
feedback from the experiment to modify the results gained from the simulation could lead to further
improvements in the transfer process.
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Magnetic Transport Optimization Measurements
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Figure A.1: Results for different 1.5 s magnetic transport optimization processes with 𝑓 =
{
𝑘 𝜋
2𝑠
}

with {𝑘 ∈ N|1 ≤
𝑘 ≤ 15} and different cost weight ratios 𝑎 : 𝑏. Optimization with 𝑦err,𝑉0

as base function and (a) 𝑎 : 𝑏 = 1 : 2,
(b) 𝑎 : 𝑏 = 1 : 1, (c) 𝑎 : 𝑏 = 1 : 4. (c) Optimization with the best found parametrization from optimization run
(c) (𝑋1:4,min) as base function and 𝑎 : 𝑏 = 1 : 4. The large uncertainties for some of the runs are due to some
unknown disturbance in the experiment that sometimes lead to a failed experimental cycle.
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(a) (b)

Figure A.2: (a) Optimization results for the 1.5 s magnetic transport with 𝑦err,𝑉0
as base function, 𝑓 =

{
𝑘 𝜋

1.5 s
}

with
{𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and 𝑎 : 𝑏 = 1 : 4. This is the result of the first optimization with 𝑎 : 𝑏 = 1 : 4. (b) Results
for the second optimization of the 1.5 s magnetic transport with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and 𝑎 : 𝑏 = 1 : 4. For this
optimization parametrization Eq. (4.5) was used. The trajectory shown in (a) was used as base function. The blue
curve shows the result of the optimization run. The orange curve shows the smoothed trajectory with a shorter
magnetic transport time of 1.45 s.

(a) (b)

Figure A.3: Results for the 2 s magnetic transport optimization processes with frequency range 𝑓 =
{
𝑘 𝜋
2𝑠
}

with
{𝑘 ∈ N|1 ≤ 𝑘 ≤ 15} and cost weight ratio 𝑎 : 𝑏 = 1 : 2. Each run number corresponds to a new parameter set that
was tested. The best found parametrizations correspond to the (a) blue curve and (b) purple curve in Fig. 4.25. The
large uncertainties for some of the runs are due to some unknown disturbance in the experiment that sometimes
lead to a failed experimental cycle.
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(a) (b) (c)

(d) (e) (f)

Figure A.4: Characterization measurements quantifying the performance of the magnetic transport with the best
found trajectories from the optimization run with the frequency range set to 𝑓 =

{
𝑘 𝜋

1.5𝑠
}

with {𝑘 ∈ N|1 ≤ 𝑘 ≤ 15}
and cost factor weights 𝑎 : 𝑏 = 1 : 4. (a)-(c) Results for the magnetic transport with 𝑋1:4,min parametrization with
a reduced transport time of 𝑇MT = 1.43 s. (d)-(f) Results for the magnetic transport with 𝑋𝑠

1:4,min parametrization
with a reduced transport time of 𝑇MT = 1.45 s and smoothed transport end. The characterization measurements
consist of a time-of flight (TOF) measurement in the Science chamber after 500 ms holding time in the last
transport trap. 𝜎𝑥,𝑦 describes the cloud width along the 𝑥- and 𝑦-axis. The temperatures are extracted by fitting
Eq. (2.1) to the data. The second characterization measurement measures the displacement of the cloud center
𝑦𝑐 along the transport axis for different holding times 𝑡hold, SC in the SC trap after the magnetic transport. The
sloshing measurements are averaged over 10 loops and the TOF measurements are averaged over 20 loops.
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